
Radek Bíba David Ryan Cheryn Tan
Lana Brindley Alison Young

Red Hat Enterprise Linux for Real
Time 7
Tuning Guide

Advanced tuning procedures for Red Hat Enterprise Linux for Real Time

Red Hat Enterprise Linux for Real Time 7 Tuning Guide

Advanced tuning procedures for Red Hat Enterprise Linux for Real Time

Radek Bíba
Red Hat Customer Content Services
rbiba@redhat.com

David Ryan
Red Hat Customer Content Services
dryan@redhat.com

Cheryn Tan
Red Hat Customer Content Services

Lana Brindley
Red Hat Customer Content Services

Alison Young
Red Hat Customer Content Services

Legal Notice

Copyright © 2015 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, o r a modified version o f it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red
Hat trademarks must be removed.

Red Hat, as the licensor o f this document, waives the right to enforce, and agrees not to assert,
Section 4d o f CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks o f Red Hat, Inc., registered in the United States and o ther
countries.

Linux ® is the registered trademark o f Linus Torvalds in the United States and o ther countries.

Java ® is a registered trademark o f Oracle and/or its affiliates.

XFS ® is a trademark o f Silicon Graphics International Corp. or its subsidiaries in the United
States and/or o ther countries.

MySQL ® is a registered trademark o f MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an o fficial trademark o f Joyent. Red Hat Software Collections is not fo rmally
related to or endorsed by the o fficial Joyent Node.js open source or commercial pro ject.

The OpenStack ® Word Mark and OpenStack Logo are either registered trademarks/service
marks or trademarks/service marks o f the OpenStack Foundation, in the United States and o ther
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All o ther trademarks are the property o f their respective owners.

Abstract
This book contains advanced tuning procedures for Red Hat Enterprise Linux for Real Time. For
installation instructions, see the Red Hat Enterprise Linux for Real Time Installation Guide.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

Preface

Chapt er 1 . Before You St art T uning Your Red Hat Ent erprise Linux for Real T ime Syst em

Chapt er 2 . General Syst em T uning
2.1. Using the Tuna Interface
2.2. Setting Pers istent Tuning Parameters
2.3. Setting BIOS Parameters
2.4. Interrup t and Pro cess Bind ing
2.5. File System Determinism Tip s
2.6 . Using Hard ware Clo cks fo r System Timestamp ing
2.7. Avo id Running Extra Ap p licatio ns
2.8 . Swap p ing and Out o f Memo ry Tip s
2.9 . Netwo rk Determinism Tip s
2.10 . syslo g Tuning Tip s
2.11. The PC Card Daemo n
2.12. Red uce TCP Perfo rmance Sp ikes

Chapt er 3. Realt ime- Specific T uning
3.1. Setting Sched uler Prio rities
3.2. Using kd ump and kexec with the Red Hat Enterp rise Linux fo r Real Time Kernel
3.3. TSC Timer Synchro nizatio n o n Op tero n CPUs
3.4. Infinib and
3.5. Ro CEE and Hig h Perfo rmance Netwo rking
3.6 . No n-Unifo rm Memo ry Access
3.7. Red ucing the TCP Delayed Ack Timeo ut
3.8 . Using d eb ug fs
3.9 . Using the ftrace Util i ty fo r Tracing Latencies
3.10 . Latency Tracing Using trace-cmd
3.11. Using sched _nr_mig rate to Limit SCHED_OTHER Task Mig ratio n.
3.12. Real Time Thro ttl ing

Chapt er 4 . Applicat ion T uning and Deployment
4.1. Sig nal Pro cessing in Realtime Ap p licatio ns
4.2. Using sched _yield and Other Synchro nizatio n Mechanisms
4.3. Mutex Op tio ns
4.4. TCP_NODELAY and Small Buffer Writes
4.5. Setting Realtime Sched uler Prio rities
4.6 . Lo ad ing Dynamic Lib raries
4.7. Using _COARSE POSIX Clo cks fo r Ap p licatio n Timestamp ing
4.8 . Ab o ut Perf

Chapt er 5. More Informat ion
5.1. Rep o rting Bug s

Event T racing

Det ailed Descript ion of Ft race

Revision Hist ory

2

3

5
5
5
6
7

10
11
13
14
16
17
18
18

2 0
20
22
25
26
26
27
27
27
27
31
33
33

35
35
35
36
38
39
39
40
42

4 6
46

4 7

4 8

1 0 5

T able of Cont ent s

1

Preface

This book detailed tuning information about Red Hat Enterprise Linux for Real Time.

Many industries and organizations need extremely high performance computing and may require low
and predictable latency, especially in the financial and telecommunications industries. Latency, or
response time, is defined as the time between an event and system response and is generally
measured in microseconds (μs).

For most applications running under a Linux environment, basic performance tuning can improve
latency sufficiently. For those industries where latency not only needs to be low, but also
accountable and predictable, Red Hat has now developed a 'drop-in' kernel replacement that
provides this. Red Hat Enterprise Linux for Real Time provides seamless integration with Red Hat
Enterprise Linux 7 and offers clients the opportunity to measure, configure, and record latency times
within their organization.

You will need to have the Red Hat Enterprise Linux for Real Time kernel installed before you begin the
tuning procedures in this book. If you have not yet installed the Red Hat Enterprise Linux for Real
Time kernel, or need help with installation issues, read the Red Hat Enterprise Linux for Real Time
Installation Guide.

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

2

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux_for_Real_Time/7/html/Installation_Guide/index.html

Chapter 1. Before You Start Tuning Your Red Hat
Enterprise Linux for Real Time System

Red Hat Enterprise Linux for Real Time is designed to be used on well-tuned systems for applications
with extremely high determinism requirements. Kernel system tuning offers the vast majority of the
improvement in determinism. For example, in many workloads thorough system tuning improves
consistency of results by around 90%. This is why we typically recommend that customers first
perform the Chapter 2, General System Tuning of standard Red Hat Enterprise Linux before using
Red Hat Enterprise Linux for Real Time.

Things to Remember While You Are Tuning Your Red Hat Enterprise Linux for Real T ime
Kernel

1. Be Patient

Realtime tuning is an iterative process; you will almost never be able to tweak a few variables
and know that the change is the best that can be achieved. Be prepared to spend days or
weeks narrowing down the set of tunings that work best for your system.

Additionally, always make long test runs. Changing some tuning parameters then doing a
five minute test run is not a good validation of a set of tunes. Make the length of your test runs
adjustable and run them for longer than a few minutes. Try to narrow down to a few different
tuning sets with test runs of a few hours, then run those sets for many hours or days at a time,
to try and catch corner-cases of max latencies or resource exhaustion.

2. Be Accurate

Build a measurement mechanism into your application, so that you can accurately gauge
how a particular set of tuning changes affect the application's performance. Anecdotal
evidence (e.g. "The mouse moves more smoothly") is usually wrong and varies from person
to person. Do hard measurements and record them for later analysis.

3. Be Methodical

It is very tempting to make multiple changes to tuning variables between test runs, but doing
so means that you do not have a way to narrow down which tune affected your test results.
Keep the tuning changes between test runs as small as you can.

4. Be Conservative

It is also tempting to make large changes when tuning, but it is almost always better to make
incremental changes. You will find that working your way up from the lowest to highest
priority values will yield better results in the long run.

5. Be Smart

Use the tools you have available. The Tuna graphical tuning tool makes it easy to change
processor affinities for threads and interrupts, thread priorities and to isolate processors for
application use. The taskset and chrt command line utilities allow you to do most of what
Tuna does. If you run into performance problems, the ftrace and perf tools can help locate
latency issues.

6. Be Flexible

Chapt er 1 . Before You St art T uning Your Red Hat Ent erprise Linux for Real T ime Syst em

3

Rather than hard-coding values into your application, use external tools to change policy,
priority and affinity. This allows you to try many different combinations and simplifies your
logic. Once you have found some settings that give good results, you can either add them to
your application, or set up some startup logic to implement the settings when the application
starts.

Scheduling Policies

Linux uses three main scheduling policies:

SCHED_OTHER (somet imes called SCHED_NORMAL)

This is the default thread policy and has dynamic priority controlled by the kernel. The
priority is changed based on thread activity. Threads with this policy are considered to
have a realtime priority of 0 (zero).

SCHED_FIFO (First in , f irst out)

A realtime policy with a priority range of from 1 - 99, with 1 being the lowest and 99 the
highest. SCHED_FIFO threads always have a higher priority than SCHED_OTHER threads
(for example, a SCHED_FIFO thread with a priority of 1 will have a higher priority than any
SCHED_OTHER thread). Any thread created as a SCHED_OTHER thread has a fixed priority
and will run until it is blocked or preempted by a higher priority thread.

SCHED_RR (Round-Robin)

SCHED_RR is a modification of SCHED_FIFO . Threads with the same priority have a
quantum and are round-robin scheduled among all equal priority SCHED_RR threads. This
policy is rarely used.

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

4

Chapter 2. General System Tuning

This chapter contains general tuning that can be performed on a standard Red Hat Enterprise Linux
installation. It is important that these are performed first, in order to better see the benefits of the
Red Hat Enterprise Linux for Real Time kernel.

It is recommended that you read these sections first. They contain background information on how to
modify tuning parameters and will help you perform the other tasks in this book:

Section 2.1, “Using the Tuna Interface”

Section 2.2, “Setting Persistent Tuning Parameters”

When are you ready to begin tuning, perform these steps first, as they will provide the greatest benefit:

Section 2.3, “Setting BIOS Parameters”

Section 2.4, “ Interrupt and Process Binding”

Section 2.5, “File System Determinism Tips”

When you are ready to start some fine-tuning on your system, then try the other sections in this
chapter:

Section 2.6, “Using Hardware Clocks for System Timestamping”

Section 2.7, “Avoid Running Extra Applications”

Section 2.8, “Swapping and Out of Memory Tips”

Section 2.9, “Network Determinism Tips”

Section 2.10, “syslog Tuning Tips”

Section 2.11, “The PC Card Daemon”

Section 2.12, “Reduce TCP Performance Spikes”

Section 3.7, “Reducing the TCP Delayed Ack Timeout”

When you have completed all the tuning suggestions in this chapter, move on to Chapter 3, Realtime-
Specific Tuning

2.1. Using the Tuna Interface

Throughout this book, instructions are given for tuning the Red Hat Enterprise Linux for Real Time
kernel directly. The Tuna interface is a tool that assists you with making changes. It has a graphical
interface, or can be run through the command shell.

Tuna can be used to change attributes of threads (scheduling policy, scheduler priority and
processor affinity) and interrupts (processor affinity). The tool is designed to be used on a running
system, and changes take place immediately. This allows any application-specific measurement
tools to see and analyze system performance immediately after the changes have been made.

2.2. Set t ing Persistent Tuning Parameters

Chapt er 2 . General Syst em T uning

5

This book contains many examples on how to specify kernel tuning parameters. Unless stated
otherwise, the instructions will cause the parameters to remain in effect until the system reboots or
they are explicitly changed. This approach is effective for establishing the initial tuning
configuration.

Once you have decided what tuning configuration works for your system, you can make them
persistent across reboots. The method you choose depends on the type of parameter you are setting.

Procedure 2.1. Edit ing the /etc/sysctl.conf File

For any parameter that begins with /proc/sys/, including it in the /etc/sysctl.conf file will
make the parameter persistent.

1. Open the /etc/sysctl.conf file in your chosen text editor.

2. Remove the /proc/sys/ prefix from the command and replace the central / character with a
. character.

For example: the command echo 0 > /proc/sys/kernel/hung_task_panic will
become kernel.hung_task_panic.

3. Insert the new entry into the /etc/sysctl.conf file with the required parameter.

Enable gettimeofday(2)
kernel.hung_task_panic = 0

4. Run # sysctl -p to refresh with the new configuration.

~]# sysctl -p
...[output truncated]...
kernel.hung_task_panic = 0

Procedure 2.2. Edit ing the /etc/rc.d/rc.local File

Warning

The /etc/rc.d/rc.local mechanism should not be used for production startup code. It is
a holdover from the SysV Init days of startup scripts and is executed now by the systemd
service. It should only be used for testing of startup code, since there is no way to control
ordering or dependencies.

1. Adjust the command as per the Procedure 2.1, “Editing the /etc/sysctl.conf File”
instructions.

2. Insert the new entry into the /etc/rc.d/rc.local file with the required parameter.

2.3. Set t ing BIOS Parameters

Because every system and BIOS vendor uses different terms and navigation methods, this section
contains only general information about BIOS settings. If you have trouble locating the setting
mentioned, contact the BIOS vendor.

Power Management

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

6

Anything that tries to save power by either changing the system clock frequency or by
putting the CPU into various sleep states can affect how quickly the system responds to
external events.

For best response times, disable power management options in the BIOS.

Error Detect ion and Correct ion (EDAC) units

EDAC units are devices used to detect and correct errors signaled from Error Correcting
Code (ECC) memory. Usually EDAC options range from no ECC checking to a periodic scan
of all memory nodes for errors. The higher the EDAC level, the more time is spent in BIOS,
and the more likely that crucial event deadlines will be missed.

Turn EDAC off if possible. Otherwise, switch to the lowest functional level.

System Management In terrupts (SMI)

SMIs are a facility used by hardware vendors ensure the system is operating correctly. The
SMI interrupt is usually not serviced by the running operating system, but by code in the
BIOS. SMIs are typically used for thermal management, remote console management (IPMI),
EDAC checks, and various other housekeeping tasks.

If the BIOS contains SMI options, check with the vendor and any relevant documentation to
check to what extent it is safe to disable them.

Warning

While it is possible to completely disable SMIs, it is strongly recommended that you
do not do this. Removing the ability for your system to generate and service SMIs
can result in catastrophic hardware failure.

2.4 . Interrupt and Process Binding

Realtime environments need to minimize or eliminate latency when responding to various events.
Ideally, interrupts (IRQs) and user processes can be isolated from one another on different dedicated
CPUs.

Interrupts are generally shared evenly between CPUs. This can delay interrupt processing through
having to write new data and instruction caches, and often creates conflicts with other processing
occurring on the CPU. In order to overcome this problem, time-critical interrupts and processes can
be dedicated to a CPU (or a range of CPUs). In this way, the code and data structures needed to
process this interrupt will have the highest possible likelihood to be in the processor data and
instruction caches. The dedicated process can then run as quickly as possible, while all other non-
time-critical processes run on the remainder of the CPUs. This can be particularly important in cases
where the speeds involved are in the limits of memory and peripheral bus bandwidth available. Here,
any wait for memory to be fetched into processor caches will have a noticeable impact in overall
processing time and determinism.

In practice, optimal performance is entirely application specific. For example, in tuning applications
for different companies which perform similar functions, the optimal performance tunings were
completely different. For one firm, isolating 2 out of 4 CPUs for operating system functions and
interrupt handling and dedicating the remaining 2 CPUs purely for application handling was
optimal. For another firm, binding the network related application processes onto a CPU which was
handling the network device driver interrupt yielded optimal determinism. Ultimately, tuning is often
accomplished by trying a variety of settings to discover what works best for your organization.

Chapt er 2 . General Syst em T uning

7

Important

For many of the processes described here, you will need to know the CPU mask for a given
CPU or range of CPUs. The CPU mask is typically represented as a 32-bit bitmask. It can also
be expressed as a decimal or hexadecimal number, depending on the command you are
using. For example: The CPU mask for CPU 0 only is
00000000000000000000000000000001 as a bitmask, 1 as a decimal, and
0x00000001 as a hexadecimal. The CPU mask for both CPU 0 and 1 is
00000000000000000000000000000011 as a bitmask, 3 as a decimal, and
0x00000003 as a hexadecimal.

Procedure 2.3. Disabling the irqbalance Daemon

This daemon is enabled by default and periodically forces interrupts to be handled by CPUs in an
even, fair manner. However in realtime deployments, applications are typically dedicated and bound
to specific CPUs, so the irqbalance daemon is not required.

1. Check the status of the irqbalance daemon.

~]# systemctl status irqbalance
irqbalance.service - irqbalance daemon
 Loaded: loaded (/usr/lib/systemd/system/irqbalance.service;
enabled)
 Active: active (running) …

2. If the irqbalance daemon is running, stop it.

~]# systemctl stop irqbalance

3. Ensure that irqbalance does not restart on boot.

~]# systemctl disable irqbalance

Procedure 2.4 . Excluding CPUs f rom IRQ Balancing

The /etc/sysconfig/irqbalance configuration file contains a setting that allows CPUs to be
excluded from consideration by the IRQ balacing service. This parameter is named
IRQBALANCE_BANNED_CPUS and is a 64-bit hexadecimal bit mask, where each bit of the mask
represents a CPU core.

For example, if you are running a 16-core system and want to remove CPUs 8 to 15 from IRQ
balancing, do the following:

1. Open /etc/sysconfig/irqbalance in your preferred text editor and find the section of
the file titled IRQBALANCE_BANNED_CPUS.

IRQBALANCE_BANNED_CPUS
64 bit bitmask which allows you to indicate which cpu's should
be skipped when reblancing irqs. Cpu numbers which have their
corresponding bits set to one in this mask will not have any
irq's assigned to them on rebalance
#
#IRQBALANCE_BANNED_CPUS=

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

8

2. Exclude CPUs 8 to 15 by uncommenting the variable IRQBALANCE_BANNED_CPUS and
setting its value this way:

IRQBALANCE_BANNED_CPUS=0000ff00

3. This will cause the irqbalance process to ignore the CPUs that have bits set in the bitmask;
in this case, bits 8 through 15.

4. If you are running a system with up to 64 CPU cores, separate each group of eight
hexadecimal digits with a comma:

IRQBALANCE_BANNED_CPUS=00000001,0000ff00

The above mask excludes CPUs 8 to 15 as well as CPU 33 from IRQ balancing.

Procedure 2.5. Manually Assigning CPU Af f in ity to Individual IRQs

1. Check which IRQ is in use by each device by viewing the /proc/interrupts file:

~]# cat /proc/interrupts

This file contains a list of IRQs. Each line shows the IRQ number, the number of interrupts that
happened in each CPU, followed by the IRQ type and a description:

 CPU0 CPU1
0: 26575949 11 IO-APIC-edge timer
1: 14 7 IO-APIC-edge i8042
...[output truncated]...

2. To instruct an IRQ to run on only one processor, use the echo command to write the CPU
mask, as a hexadecimal number, to the smp_affinity entry of the specific IRQ. In this
example, we are instructing the interrupt with IRQ number 142 to run on CPU 0 only:

~]# echo 1 > /proc/irq/142/smp_affinity

3. This change will only take effect once an interrupt has occurred. To test the settings, generate
some disk activity, then check the /proc/interrupts file for changes. Assuming that you
have caused an interrupt to occur, you will see that the number of interrupts on the chosen
CPU have risen, while the numbers on the other CPUs have not changed.

Procedure 2.6 . Binding Processes to CPUs Using the taskset Ut ility

The taskset utility uses the process ID (PID) of a task to view or set the affinity, or can be used to
launch a command with a chosen CPU affinity. In order to set the affinity, taskset requires the CPU
mask expressed as a decimal or hexadecimal number. The mask argument is a bitmask that specifies
which CPU cores are legal for the command or PID being modified.

1. To set the affinity of a process that is not currently running, use taskset and specify the CPU
mask and the process. In this example, my_embedded_process is being instructed to use
only CPU 3 (using the decimal version of the CPU mask).

~]# taskset 8 /usr/local/bin/my_embedded_process

Chapt er 2 . General Syst em T uning

9

2. It is also possible to specify more than one CPU in the bitmask. In this example,
my_embedded_process is being instructed to execute on processors 4, 5, 6, and 7 (using
the hexadecimal version of the CPU mask).

~]# taskset 0xF0 /usr/local/bin/my_embedded_process

3. Additionally, you can set the CPU affinity for processes that are already running by using the
-p (--pid) option with the CPU mask and the PID of the process you wish to change. In this
example, the process with a PID of 7013 is being instructed to run only on CPU 0.

~]# taskset -p 1 7013

4. Lastly, using the -c parameter, you can specify a CPU list instead of a CPU mask. For
example, in order to use CPU 0, 4 and CPUs 7 to 11, the command line would contain -c
0,4,7-11. This invocation is more convenient in most cases.

Important

The taskset utility works on a Non-Uniform Memory Access (NUMA) system, but it does not
allow the user to bind threads to CPUs and the closest NUMA memory node. On such systems,
taskset is not the preferred tool, and the numact l utility should be used instead for its
advanced capabilities. See Section 3.6, “Non-Uniform Memory Access” for more information.

Related Manual Pages

For more information, or for further reading, the following man pages are related to the information
given in this section.

chrt(1)

taskset(1)

nice(1)

renice(1)

sched_setscheduler(2) for a description of the Linux scheduling scheme.

2.5. File System Determinism T ips

The order in which journal changes arrive are sometimes not in the order that they are actually
written to disk. The kernel I/O system has the option of reordering the journal changes, usually to try
and make best use of available storage space. Journal activity can introduce latency through re-
ordering journal changes and committing data and metadata. Often, journaling file systems can do
things in such a way that they slow the system down.

The default filesystem used by Red Hat Enterprise Linux 7 is a journaling file system called xfs. A
much earlier file system called ext2 does not use journaling. Unless your organization specifically
requires journaling, consider using ext2. In many of our best benchmark results, we utilize the ext2
file system and consider it one of the top initial tuning recommendations.

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

10

Journaling file systems like xfs record the time a file was last accessed (atime). If using ext2 is not
a suitable solution for your system, consider disabling atime under xfs instead. Disabling atime
increases performance and decreases power usage by limiting the number of writes to the filesystem
journal.

Procedure 2.7. Disabling atime

1. Open the /etc/fstab file using your chosen text editor and locate the entry for the root
mount point.

/dev/mapper/rhel-root / xfs defaults…

2. Edit the options sections to include the terms noatime and nodiratime. noatime prevents
access timestamps being updated when a file is read and nodiratime will stop directory
inode access times being updated.

/dev/mapper/rhel-root / xfs noatime,nodiratime…

Important

Some applications rely on atime being updated. Therefore, this option is reasonable
only on system where such applications are not used.

Alternatively, you can use the relatime mount option, which ensures that the access
time is only updated if the previous access time is older than the current modify time.

Related Manual Pages

For more information, or for further reading, the following man pages are related to the information
given in this section.

mkfs.ext2(8)

mkfs.xfs(8)

mount(8) - for information on atime, nodiratime and noatime

2.6. Using Hardware Clocks for System T imestamping

Multiprocessor systems such as NUMA or SMP have multiple instances of hardware clocks. During
boot time the kernel discovers the available clock sources and selects one to use. For the list of the
available clock sources in your system, view the
/sys/devices/system/clocksource/clocksource0/available_clocksource file:

~]# cat
/sys/devices/system/clocksource/clocksource0/available_clocksource
tsc hpet acpi_pm

In the example above, the TSC, HPET and ACPI_PM clock sources are available.

The clock source currently in use can be inspected by reading the
/sys/devices/system/clocksource/clocksource0/current_clocksource file:

Chapt er 2 . General Syst em T uning

11

~]# cat /sys/devices/system/clocksource/clocksource0/current_clocksource
tsc

Changing Clock Sources

Sometimes the best-performing clock for a system's main application is not used due to known
problems on the clock. After ruling out all problematic clocks, the system can be left with a hardware
clock that is unable to satisfy the minimum requirements of a Realtime system.

Requirements for crucial applications vary on each system. Therefore, the best clock for each
application, and consequently each system, also varies. Some applications depend on clock
resolution, and a clock that delivers reliable nanoseconds readings can be more suitable.
Applications that read the clock too often can benefit from a clock with a smaller reading cost (the
time between a read request and the result).

In all these cases it is possible to override the clock selected by the kernel, provided that you
understand the side effects of this override and can create an environment which will not trigger the
known shortcomings of the given hardware clock. To do so, select a clock source from the list
presented in the
/sys/devices/system/clocksource/clocksource0/available_clocksource file and
write the clock's name into the
/sys/devices/system/clocksource/clocksource0/current_clocksource file. For
example, the following command sets HPET as the clock source in use:

~]# echo hpet >
/sys/devices/system/clocksource/clocksource0/current_clocksource

Note

For a brief description of widely used hardware clocks, and to compare the performance
between different hardware clocks, see the Red Hat Enterprise Linux for Real Time Realtime
Reference Guide.

Conf iguring Addit ional Boot Parameters for the TSC Clock

While there is no single clock which is ideal for all systems, TSC is generally the preferred clock
source. To optimize the reliability of the TSC clock, you can configure additional parameters when
booting the kernel, for example:

idle=poll: Forces the clock to avoid entering the idle state.

processor.max_cstate=1: Prevents the clock from entering deeper C-states (energy saving
mode), so it does not become out of sync.

Note however that in both cases there will be an increase in energy consumption, as the system will
always run at top speed.

Contro lling Power Management Transit ions

Modern processors actively transition to higher power saving states (C-states) from lower states.
Unfortunately, transitioning from a high power saving state back to a running state can consume
more time than is optimal for a Realtime application. To prevent these transitions, an application can
use the Power Management Quality of Service (PM QoS) interface.

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

12

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux_for_Real_Time/7/html/Installation_Guide/index.html

With the PM QoS interface, the system can emulate the behaviour of the idle=poll and
processor.max_cstate=1 parameters (as listed in Configuring Additional Boot Parameters for the
TSC Clock), but with a more fine-grained control of power saving states.

When an application holds the /dev/cpu_dma_latency file open, the PM QoS interface prevents
the processor from entering deep sleep states, which cause unexpected latencies when they are
being exited. When the file is closed, the system returns to a power-saving state.

1. Open the /dev/cpu_dma_latency file. Keep the file descriptor open for the duration of the
low-latency operation.

2. Write a 32-bit number to it. This number represents a maximum response time in
microseconds. For the fastest possible response time, use 0.

An example /dev/cpu_dma_latency file is as follows:

static int pm_qos_fd = -1;

void start_low_latency(void)
{
 s32_t target = 0;

 if (pm_qos_fd >= 0)
 return;
 pm_qos_fd = open("/dev/cpu_dma_latency", O_RDWR);
 if (pm_qos_fd < 0) {
 fprintf(stderr, "Failed to open PM QOS file: %s",
 strerror(errno));
 exit(errno);
 }
 write(pm_qos_fd, &target, sizeof(target));
}

void stop_low_latency(void)
{
 if (pm_qos_fd >= 0)
 close(pm_qos_fd);
}

The application will first call start_low_latency(), perform the required latency-sensitive
processing, then call stop_low_latency().

Related Manual Pages

For more information, or for further reading, the following book is related to the information given in
this section.

Linux System Programming by Robert Love

2.7. Avoid Running Ext ra Applicat ions

These are common practices for improving performance, yet they are often overlooked. Here are some
'extra applications' to look for:

Graphical desktop

Chapt er 2 . General Syst em T uning

13

Do not run graphics where they are not absolutely required, especially on servers. To check if the
system is configured to boot into the GUI by default, run the following command:

~]# systemctl get-default

If you see graphical.target, reconfigure the system to boot into the text mode:

~]# systemctl set-default multi-user.target

Mail Transfer Agents (MTA, such as Sendmail or Postfix)

Unless you are actively using Sendmail on the system you are tuning, disable it. If it is required,
ensure it is well tuned or consider moving it to a dedicated machine.

Important

Sendmail is used to send system-generated messages, which are executed by programs
such as cron. This includes reports generated by logging functions like logwatch. You will
not be able to receive these messages if sendmail is disabled.

Remote Procedure Calls (RPCs)

Network File System (NFS)

Mouse Services

If you are not using a graphical interface like Gnome or KDE, then you probably do not need a
mouse either. Remove the hardware and uninstall gpm.

Automated tasks

Check for automated cron or at jobs that could impact performance.

Remember to also check your third party applications, and any components added by external
hardware vendors.

Related Manual Pages

For more information, or for further reading, the following man pages are related to the information
given in this section.

rpc(3)

nfs(5)

gpm(8)

2.8. Swapping and Out of Memory T ips

Memory Swapping

Swapping pages out to disk can introduce latency in any environment. To ensure low latency, the
best strategy is to have enough memory in your systems so that swapping is not necessary. Always
size the physical RAM as appropriate for your application and system. Use vmstat to monitor
memory usage and watch the si (swap in) and so (swap out) fields. It is optimal that they remain

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

14

zero as much as possible.

Procedure 2.8. Out of Memory (OOM)

Out of Memory (OOM) refers to a computing state where all available memory, including swap space,
has been allocated. Normally this will cause the system to panic and stop functioning as expected.
There is a switch that controls OOM behavior in /proc/sys/vm/panic_on_oom. When set to 1 the
kernel will panic on OOM. The default setting is 0 which instructs the kernel to call a function named
oom_killer on an OOM. Usually, oom_killer can kill rogue processes and the system will
survive.

1. The easiest way to change this is to echo the new value to
/proc/sys/vm/panic_on_oom.

~]# cat /proc/sys/vm/panic_on_oom
0

~]# echo 1 > /proc/sys/vm/panic_on_oom

~]# cat /proc/sys/vm/panic_on_oom
1

Note

It is recommended that you make the $RT; kernel panic on OOM. When the system has
encountered an OOM state, it is no longer deterministic.

2. It is also possible to prioritize which processes get killed by adjusting the oom_killer
score. In /proc/PID/ there are two files named oom_adj and oom_score. Valid scores for
oom_adj are in the range -16 to +15. This value is used to calculate the 'badness' of the
process using an algorithm that also takes into account how long the process has been
running, among other factors. To see the current oom_killer score, view the oom_score
for the process. oom_killer will kill processes with the highest scores first.

This example adjusts the oom_score of a process with a PID of 12465 to make it less likely
that oom_killer will kill it.

~]# cat /proc/12465/oom_score
79872

~]# echo -5 > /proc/12465/oom_adj

~]# cat /proc/12465/oom_score
78

3. There is also a special value of -17, which disables oom_killer for that process. In the
example below, oom_score returns a value of O, indicating that this process would not be
killed.

~]# cat /proc/12465/oom_score
78

~]# echo -17 > /proc/12465/oom_adj

Chapt er 2 . General Syst em T uning

15

~]# cat /proc/12465/oom_score
0

Related Manual Pages

For more information, or for further reading, the following man pages are related to the information
given in this section.

swapon(2)

swapon(8)

vmstat(8)

2.9. Network Determinism T ips

Transmission Contro l Protocol (TCP)

TCP can have a large effect on latency. TCP adds latency in order to obtain efficiency, control
congestion, and to ensure reliable delivery. When tuning, consider the following points:

Do you need ordered delivery?

Do you need to guard against packet loss?

Transmitting packets more than once can cause delays.

If you must use TCP, consider disabling the Nagle buffering algorithm by using TCP_NODELAY
on your socket. The Nagle algorithm collects small outgoing packets to send all at once, and can
have a detrimental effect on latency.

Network Tuning

There are numerous tools for tuning the network. Here are some of the more useful:

In terrupt Coalescing

To reduce network traffic, packets can be collected and a single interrupt generated.

In systems that transfer large amounts of data where bandwidth use is a priority, using the
default value or increasing coalesce can increase bandwidth use and lower system use.
For systems requiring a rapid network response, reducing or disabling coalesce is advised.

Use the -C (--coalesce) option with the ethtool command to enable.

Congest ion

Often, I/O switches can be subject to back-pressure, where network data builds up as a
result of full buffers.

Use the -A (--pause) option with the ethtool command to change pause parameters
and avoid network congestion.

In f in iband (IB)

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

16

Infiniband is a type of communications architecture often used to increase bandwidth and
provide quality of service and failover. It can also be used to improve latency through
Remote Direct Memory Access (RDMA) capabilities.

Network Protocol Stat ist ics

Use the -s (--statistics) option with the netstat command to monitor network traffic.

See also Section 2.12, “Reduce TCP Performance Spikes” and Section 3.7, “Reducing the TCP
Delayed Ack Timeout” .

Related Manual Pages

For more information, or for further reading, the following man pages are related to the information
given in this section.

ethtool(8)

netstat(8)

2.10. syslog Tuning T ips

syslog can forward log messages from any number of programs over a network. The less often this
occurs, the larger the pending transaction is likely to be. If the transaction is very large an I/O spike
can occur. To prevent this, keep the interval reasonably small.

Procedure 2.9 . Using syslogd for System Logging.

The system logging daemon, called syslogd , is used to collect messages from a number of different
programs. It also collects information reported by the kernel from the kernel logging daemon klogd .
Typically, syslogd will log to a local file, but it can also be configured to log over a network to a
remote logging server.

1. To enable remote logging, you will first need to configure the machine that will receive the
logs. See https://access.redhat.com/solutions/54363 for details.

2. Once remote logging support is enabled on the remote logging server, each system that will
send logs to it must be configured to send its syslog output to the server, rather than writing
those logs to the local file system. To do this, edit the /etc/rsyslog.conf file on each
client system. For each of the various logging rules defined in that file, you can replace the
local log file with the address of the remote logging server.

Log all kernel messages to remote logging host.
kern.* @my.remote.logging.server

The example above will cause the client system to log all kernel messages to the remote
machine at @my.remote.logging.server.

3. It is also possible to configure syslogd to log all locally generated system messages, by
adding a wildcard line to the /etc/rsyslog.conf file:

Log all messages to a remote logging server:
. @my.remote.logging.server

Chapt er 2 . General Syst em T uning

17

https://access.redhat.com/solutions/54363

Important

Note that syslogd does not include built-in rate limiting on its generated network traffic.
Therefore, we recommend that remote logging on Red Hat Enterprise Linux for Real Time
systems be confined to only those messages that are required to be remotely logged by your
organization. For example, kernel warnings, authentication requests, and the like. Other
messages are locally logged.

Related Manual Pages

For more information, or for further reading, the following man pages are related to the information
given in this section.

syslog(3)

rsyslog.conf(5)

rsyslogd(8)

2.11. The PC Card Daemon

The pcscd daemon is used to manage connections to PC and SC smart card readers. Although
pcscd is usually a low priority task, it can often use more CPU than any other daemon. This
additional background noise can lead to higher pre-emption costs to realtime tasks and other
undesirable impacts on determinism.

Procedure 2.10. Disabling the pcscd Daemon

1. Check the status of the pcscd daemon.

~]# systemctl status pcscd
pcscd.service - PC/SC Smart Card Daemon
 Loaded: loaded (/usr/lib/systemd/system/pcscd.service; static)
 Active: active (running) …

2. If the pcscd daemon is running, stop it.

~]# systemctl stop pcscd

3. Ensure that pcscd does not restart on boot.

~]# systemctl disable pcscd

2.12. Reduce TCP Performance Spikes

Turn timestamps off to reduce performance spikes related to timestamp generation. The sysctl
command controls the values of TCP related entries, setting the timestamps kernel parameter found at
/proc/sys/net/ipv4/tcp_timestamps.

Turn timestamps off with the following command:

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

18

~]# sysctl -w net.ipv4.tcp_timestamps=0
net.ipv4.tcp_timestamps = 0

Turn timestamps on with the following command:

~]# sysctl -w net.ipv4.tcp_timestamps=1
net.ipv4.tcp_timestamps = 1

Print the current value with the following command:

~]# sysctl net.ipv4.tcp_timestamps
net.ipv4.tcp_timestamps = 1

The value 1 indicates that timestamps are on, the value 0 indicates they are off.

Chapt er 2 . General Syst em T uning

19

Chapter 3. Realtime-Specific Tuning

Once you have completed the optimization in Chapter 2, General System Tuning you are ready to start
Red Hat Enterprise Linux for Real Time specific tuning. You must have the Red Hat Enterprise Linux
for Real Time kernel installed for these procedures.

Important

Do not attempt to use the tools in this section without first having completed Chapter 2, General
System Tuning. You will not see a performance improvement.

When are you ready to begin Red Hat Enterprise Linux for Real Time tuning, perform these steps first,
as they will provide the greatest benefit:

Section 3.1, “Setting Scheduler Priorities”

When you are ready to start some fine-tuning on your system, then try the other sections in this
chapter:

Section 3.2, “Using kdump and kexec with the Red Hat Enterprise Linux for Real Time Kernel”

Section 3.3, “TSC Timer Synchronization on Opteron CPUs”

Section 3.4, “ Infiniband”

Section 3.6, “Non-Uniform Memory Access”

Section 3.7, “Reducing the TCP Delayed Ack Timeout”

This chapter also includes information on performance monitoring tools:

Section 3.9, “Using the ftrace Utility for Tracing Latencies”

Section 3.10, “Latency Tracing Using trace-cmd ”

Section 3.11, “Using sched_nr_migrate to Limit SCHED_OTHER Task Migration.”

When you have completed all the tuning suggestions in this chapter, move on to Chapter 4,
Application Tuning and Deployment

3.1. Set t ing Scheduler Priorit ies

The Red Hat Enterprise Linux for Real Time kernel allows fine grained control of scheduler priorities.
It also allows application level programs to be scheduled at a higher priority than kernel threads.
This is useful but it can also carry consequences. It is possible that it will cause the system to hang
and other unpredictable behavior if crucial kernel processes are prevented from running as needed.
Ultimately the correct settings are workload dependent.

Priorities are defined in groups, with some groups dedicated to certain kernel functions:

Table 3.1. Priority Map

Priority Threads Descript ion

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

20

1 Low priority kernel threads Priority 1 is usually reserved for
those tasks that need to be just
above SCHED_OTHER

2 - 49 Available for use Range used for typical
application priorities

50 Default hard-IRQ value
51 - 98 High priority threads Use this range for threads that

execute periodically and must
have quick response times. Do
not use this range for cpu-
bound threads as you will
starve interrupts.

99 Watchdogs and migration System threads that must run at
the highest priority

Priority Threads Descript ion

Procedure 3.1. Using rtctl to Set Priorit ies

1. Priorities are set using a series of levels, ranging from 0 (lowest priority) to 99 (highest
priority). The system startup script, rtctl , may be used to change the default priorities of
threads following kernel boot. Its default is to not modify any thread priorities.

To view scheduling priorities of running threads, use the tuna utility:

~]# tuna --show_threads
 thread ctxt_switches
 pid SCHED_ rtpri affinity voluntary nonvoluntary
cmd
 2 OTHER 0 0xfff 451 3
kthreadd
 3 FIFO 1 0 46395 2
ksoftirqd/0
 5 OTHER 0 0 11 1
kworker/0:0H
 7 FIFO 99 0 9 1
posixcputmr/0
...[output truncated]...

2. The rtctl script relies on the /etc/rtgroups file:

...[comments_truncated]...
kthreads:*:*:*:\[.*\]$
softirq:f:1:*:\[ksoftirqd\/.*\]
rcu:f:1:*:\[rcu[bc]\/.*\]
rpciod:o:*:*:\[rpciod.*\]
lockd:*:*:*:\[lockd.*\]
nfsd:*:*:*:\[nfsd.*\]
hardirq:f:50:*:\[irq[\-_/].*\]
rcun:f:99:*:\[rcun\/.*\]
watchdog:f:99:*:\[watchdog\/.*\]
migration:f:99:*:\[migration\/.*\]

Chapt er 3. Realt ime- Specific T uning

21

3. Each line defines a group that will match some set of threads. By default, all the groups are
commented out with a leading hash sign (#). You can uncomment a group and edit its
parameters, or you can add a new group with your own name and parameters. You can also
change the priority of a group by adjusting its parameters.

The entries in this file are written in the following format:

[group name]:[scheduler policy]:[scheduler priority]:[regular
expression]

In the scheduler policy field, the following values are accepted:
o Sets a policy of other. If the policy is set to

o , the scheduler priority field will be
set to 0 and ignored.

b Sets a policy of batch.
f Sets a policy of FIFO.
* If the policy is set to *, no change will be

made to to any matched thread policy.
The regular expression field matches the thread name to be modified.

4. After editing the file, you will need to restart the rtctl service to reload it with the new settings:

~]# systemctl stop rtctl
~]# systemctl start rtctl

Related Manual Pages

For more information, or for further reading, the following man pages are related to the information
given in this section.

rtctl(1)

rtgroups(5)

3.2. Using kdump and kexec with the Red Hat Enterprise Linux for Real
T ime Kernel

kdump is a reliable kernel crash dumping mechanism because the crash dump is captured from the
context of a freshly booted kernel and not from the context of the crashed kernel. kdump uses a
mechanism called kexec to boot into a second kernel whenever the system crashes. This second
kernel, often called the crash kernel, boots with very little memory and captures the dump image.

If kdump is enabled on your system, the standard boot kernel will reserve a small section of system
RAM and load the kdump kernel into the reserved space. When a kernel panic or other fatal error
occurs, kexec is used to boot into the kdump kernel without going through BIOS. The system
reboots to the kdump kernel that is confined to the memory space reserved by the standard boot
kernel, and this kernel writes a copy or image of the system memory to the storage mechanism
defined in the configuration files. Because kexec does not go through the BIOS, the memory of the
original boot is retained, and the crash dump is much more detailed. Once this is done, the kernel
reboots, which resets the machine and brings the boot kernel back up.

There are three required procedures for enabling kdump under Red Hat Enterprise Linux 7. First,
ensure that the required RPM packages are installed on the system. Second, create the minimum
configuration and modifies the GRUB command line using the rt-setup-kdump tool. Third, use a

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

22

graphical system configuration tool called system-config-kdump to create and enable a detailed
kdump configuration.

1.

Installing Required kdump Packages

The rt-setup-kdump tool is part of the rt-setup package. You also need kexec-tools and
system-config-kdump:

~]# yum install rt-setup kexec-tools system-config-kdump

2.

Creat ing a Basic kdump Kernel with rt-setup-kdump

a. Run the rt-setup-kdump tool as root:

~]# rt-setup-kdump --grub

The --grub parameter adds the necessary changes to all the Realtime kernel entries
listed in the GRUB configuration.

b. Restart the system to set up the reserved memory space. You can then turn on the
kdump init script and start the kdump service:

~]# systemctl enable kdump
~]# systemctl start kdump

3.

Enabling kdump with system-config-kdump

a. Select the Kernel crash dumps system tool from the Applicat ions → System
Tools menu, or use the following command at the shell prompt:

~]# system-config-kdump

b. The Kernel Dump Configuration window displays. On the toolbar, click the
button labeled Enable. The Red Hat Enterprise Linux for Real Time kernel supports
the crashkernel=auto parameter which automatically calculates the amount of
memory necessary to accommodate the kdump kernel.

By design, on Red Hat Enterprise Linux 7 systems with less than 4GB of RAM, the
crashkernel=auto does not reserve any memory for the kdump kernel. In this
case, it is necessary to manually set the amount of memory desired. You can do so by
entering your required value in the New kdump memory field on the Basic
Settings tab:

Chapt er 3. Realt ime- Specific T uning

23

Note

An alternative way of allocating memory for the kdump kernel is by manually
setting the crashkernel=<value> parameter in the GRUB configuration.

c. Click the Target Settings tab, and specify the target location for your dump file. It
can be either stored as a file in a local file system, written directly to a device, or sent
over a network using the NFS (Network File System) or SSH (Secure Shell) protocol.

To save your settings, click the Apply button on the toolbar.

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

24

d. Reboot the system to ensure that kdump is properly started. If you want to check that
the kdump is working correctly, you can simulate a panic using sysrq :

~]# echo c > /proc/sysrq-trigger

This will cause the kernel to panic, and the system will boot into the kdump kernel.
Once your system has been brought back up, you can check the log file at the
specified location.

Note

Some hardware needs to be reset during the configuration of the kdump kernel. If you have
any problems getting the kdump kernel to work, edit the /etc/sysconfig/kdump file and
add reset_devices=1 to the KDUMP_COMMANDLINE_APPEND variable.

Important

On IBM LS21 machines, the following warning message can occur when attempting to boot the
kdump kernel:

irq 9: nobody cared (try booting with the "irqpoll" option)
handlers:
[<ffffffff811660a0>] (acpi_irq+0x0/0x1b)
turning off IO-APIC fast mode.

Some systems will recover from this error and continue booting, while some will freeze after
displaying the message. This is a known issue. If you see this error, add the line acpi=noirq
as a boot parameter to the kdump kernel. Only add this line if this error occurs as it can cause
boot problems on machines not affected by this issue.

Related Manual Pages

For more information, or for further reading, the following man page is related to the information
given in this section.

kexec(8)

/etc/kdump.conf

3.3. TSC T imer Synchronizat ion on Opteron CPUs

The current generation of AMD64 Opteron processors can be susceptible to a large gettimeofday
skew. This skew occurs when both cpufreq and the Time Stamp Counter (TSC) are in use. Red Hat
Enterprise Linux for Real Time provides a method to prevent this skew by forcing all processors to
simultaneously change to the same frequency. As a result, the TSC on a single processor never
increments at a different rate than the TSC on another processor.

Procedure 3.2. Enabling TSC Timer Synchroniz at ion

Chapt er 3. Realt ime- Specific T uning

25

1. Open the /etc/default/grub file in your preferred text editor and append the parameters
clocksource=tsc powernow-k8.tscsync=1 to the GRUB_CMDLINE_LINUX variable.
This forces the use of TSC and enables simultaneous core processor frequency transitions.

GRUB_CMDLINE_LINUX="rd.md=0 rd.lvm=0 rd.dm=0 $([-x
/usr/sbin/rhcrashkernel-param] && /usr/sbin/rhcrashkernel-param ||
:) rd.luks=0 vconsole.keymap=us rhgb quiet clocksource=tsc
powernow-k8.tscsync=1"

2. You will need to restart your system for the changes to take effect.

Related Manual Pages

For more information, or for further reading, the following man page is related to the information
given in this section.

gettimeofday(2)

3.4 . Infiniband

Infiniband is a type of communications architecture often used to increase bandwidth and provide
quality of service and failover. It can also be used to improve latency through Remote Direct Memory
Access (RDMA) capabilities.

Support for Infiniband under Red Hat Enterprise Linux for Real Time does not differ from the support
offered under Red Hat Enterprise Linux 7.

Note

For more information see Douglas Ledford's article on Getting Started with Infiniband.

3.5. RoCEE and High Performance Networking

RoCEE (RDMA over Converged Enhanced Ethernet) is a protocol that implements Remote Direct
Memory Access (RDMA) over 10 Gigabit Ethernet networks. It allows you to maintain a consistent,
high-speed environment in your datacenters while providing deterministic, low latency data transport
for critical transactions.

High Performance Networking (HPN) is a set of shared libraries that provides RoCEE interfaces into
the kernel. Instead of going through an independent network infrastructure, HPN places data directly
into remote system memory using standard 10 Gigabit Ethernet infrastructure, resulting in less CPU
overhead and reduced infrastructure costs.

Support for RoCEE and HPN under Red Hat Enterprise Linux for Real Time does not differ from the
support offered under Red Hat Enterprise Linux 7.

Note

For more information on how to set up ethernet networks, see the Networking Guide.

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

26

http://people.redhat.com/dledford/infiniband_get_started.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/

3.6. Non-Uniform Memory Access

Non-Uniform Memory Access (NUMA) is a design used to allocate memory resources to a specific
CPU. This can improve access time and results in fewer memory locks. Although this appears as
though it would be useful for reducing latency, NUMA systems have been known to interact badly
with realtime applications, as they can cause unexpected event latencies.

As mentioned in Procedure 2.6, “Binding Processes to CPUs Using the taskset Utility” the taskset
utility only works on CPU affinity and has no knowledge of other NUMA resources such as memory
nodes. If you want to perform process binding in conjunction with NUMA, use the numact l command
instead of taskset .

For more information about the NUMA API, see Andi Kleen's whitepaper An NUMA API for Linux.

Related Manual Pages

For more information, or for further reading, the following man pages are related to the information
given in this section.

numactl(8)

3.7. Reducing the TCP Delayed Ack T imeout

Some applications that send small network packets can experience latencies due to the TCP delayed
acknowledgment timeout. This value defaults to 40ms. To avoid this problem, try reducing the
tcp_delack_min timeout value. This changes the minimum time to delay before sending an
acknowledgment systemwide.

Write the desired minimum value, in microseconds, to
/proc/sys/net/ipv4/tcp_delack_min:

~]# echo 1 > /proc/sys/net/ipv4/tcp_delack_min

3.8. Using debugfs

The debugfs file system is specially designed for debugging and making information available to
users. It must be mounted for use with ftrace and trace-cmd , and it is mounted automatically in
Red Hat Enterprise Linux 7 under the /sys/kernel/debug/ directory.

You can verify that debugfs is mounted by running the following command:

~]# mount | grep ^debugfs

3.9. Using the ftrace Ut ilit y for Tracing Latencies

One of the diagnostic facilities provided with the Red Hat Enterprise Linux for Real Time kernel is
ftrace, which is used by developers to analyze and debug latency and performance issues that
occur outside of user-space. The ftrace utility has a variety of options that allow you to use the
utility in a number of different ways. It can be used to trace context switches, measure the time it takes
for a high-priority task to wake up, the length of time interrupts are disabled, or list all the kernel
functions executed during a given period.

Chapt er 3. Realt ime- Specific T uning

27

http://www.halobates.de/numaapi3.pdf

Some tracers, such as the function tracer, will produce exceedingly large amounts of data, which can
turn trace log analysis into a time-consuming task. However, it is possible to instruct the tracer to
begin and end only when the application reaches critical code paths.

The ftrace utility can be set up once the trace variant of the Red Hat Enterprise Linux for Real Time
kernel is installed and in use.

Procedure 3.3. Using the ftrace Ut ility

1. In the /sys/kernel/debug/tracing/ directory, there is a file named
available_tracers. This file contains all the available tracers for ftrace. To see the list
of available tracers, use the cat command to view the contents of the file:

~]# cat /sys/kernel/debug/tracing/available_tracers
function_graph wakeup_rt wakeup preemptirqsoff preemptoff irqsoff
function nop

The user interface for ftrace is a series of files within debugfs. The ftrace files are also
located in the /sys/kernel/debug/tracing/ directory. Enter it:

~]# cd /sys/kernel/debug/tracing

The files in this directory can only be modified by theroot user, as enabling tracing can have
an impact on the performance of the system.

Ftrace Files

The main files within this directory are:

trace

The file that shows the output of a ftrace trace. This is really a snapshot of the trace
in time, as it stops tracing as this file is read, and it does not consume the events
read. That is, if the user disabled tracing and read this file, it will always report the
same thing every time its read.

trace_pipe

Like " trace" but is used to read the trace live. It is a producer / consumer trace,
where each read will consume the event that is read. But this can be used to see an
active trace without stopping the trace as it is read.

available_tracers

A list of ftrace tracers that have been compiled into the kernel.

current_tracer

Enables or disables a ftrace tracer.

events

A directory that contains events to trace and can be used to enable or disable
events as well as set filters for the events.

tracing_on

Disable and enable recording to the ftrace buffer. Disabling tracing via the
tracing_on file does not disable the actual tracing that is happening inside the

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

28

tracing_on file does not disable the actual tracing that is happening inside the
kernel. It only disables writing to the buffer. The work to do the trace still happens,
but the data does not go anywhere.

Tracers

Depending on how the kernel was configured, not all tracers may be available for a given
kernel. For the Red Hat Enterprise Linux for Real Time kernels, the trace and debug kernels
have different tracers than the production kernel does. This is because some of the tracers
have a noticeable overhead when the tracer is configured into the kernel but not active.
Those tracers are only enabled for the trace and debug kernels.

function

One of the most widely applicable tracers. Traces the function calls within the
kernel. Can cause noticeable overhead depending on the quantity of functions
traced. Creates little overhead when not active.

function_graph

The function_graph tracer is designed to present results in a more visually
appealing format. This tracer also traces the exit of the function, displaying a flow of
function calls in the kernel.

Note that this tracer has more overhead than the function tracer when enabled,
but the same low overhead when disabled.

wakeup

A full CPU tracer that reports the activity happening across all CPUs. Records the
time that it takes to wake up the highest priority task in the system, whether that task
is a real time task or not. Recording the max time it takes to wake up a non real time
task will hide the times it takes to wake up a real time task.

wakeup_rt

A full CPU tracer that reports the activity happening across all CPUs. Records the
time that it takes from the current highests priority task to wake up to the time it is
scheduled. Only records the time for real time tasks.

preemptirqsoff

Traces the areas that disable pre-emption or interrupts, and records the maximum
amount of time for which pre-emption or interrupts were disabled.

preemptoff

Similar to the preemptirqsoff tracer but traces only the maximum interval for
which pre-emption was disabled.

irqsoff

Similar to the preemptirqsoff tracer but traces only the maximum interval for
which interrupts were disabled.

nop

The default tracer. It does not provide any tracing facility itself, but as events may
interleave into any tracer, the nop tracer is used for specific interest in tracing
events.

Chapt er 3. Realt ime- Specific T uning

29

2. To manually start a tracing session, first select the tracer you wish to use from the list in
available_tracers and then use the echo command to insert the name of the tracer into
/sys/kernel/debug/tracing/current_tracer:

~]# echo preemptoff > /sys/kernel/debug/tracing/current_tracer

3. To check if function and function_graph tracing is enabled, use the cat command to
view the /sys/kernel/debug/tracing/options/function-trace file. A value of 1
indicates that this is enabled, and 0 indicates that it has been disabled.

~]# cat /sys/kernel/debug/tracing/options/function-trace
1

By default, function and function_graph tracing is enabled. To turn this feature on or
off, echo the appropriate value to the
/sys/kernel/debug/tracing/options/function-trace file.

~]# echo 0 > /sys/kernel/debug/tracing/options/function-trace
~]# echo 1 > /sys/kernel/debug/tracing/options/function-trace

Important

When using the echo command, ensure you place a space character in between the
value and the > character. At the shell prompt, using 0>, 1>, and 2> (without a
space character) refers to standard input, standard output and standard error. Using
them by mistake could result in unexpected trace output.

The function-trace option is useful because tracing latencies with wakeup_rt,
preemptirqsoff etc. automatically enables function tracing, which may exaggerate the
overhead.

4. Adjust details and parameters of the tracers by changing the values for the various files in the
/debugfs/tracing/ directory. Some examples are:

The irqsoff, preemptoff, preempirqsoff, and wakeup tracers continuously monitor latencies.
When they record a latency greater than the one recorded in tracing_max_latency the
trace of that latency is recorded, and tracing_max_latency is updated to the new
maximum time. In this way, tracing_max_latency will always show the highest recorded
latency since it was last reset.

To reset the maximum latency, echo 0 into the tracing_max_latency file. To see only
latencies greater than a set amount, echo the amount in microseconds:

~]# echo 0 > /sys/kernel/debug/tracing/tracing_max_latency

When the tracing threshold is set, it overrides the maximum latency setting. When a latency is
recorded that is greater than the threshold, it will be recorded regardless of the maximum
latency. When reviewing the trace file, only the last recorded latency is shown.

To set the threshold, echo the number of microseconds above which latencies must be
recorded:

~]# echo 200 > /sys/kernel/debug/tracing/tracing_thresh

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

30

5. View the trace logs:

~]# cat /sys/kernel/debug/tracing/trace

6. To store the trace logs, copy them to another file:

~]# cat /sys/kernel/debug/tracing/trace > /tmp/lat_trace_log

7. Function tracing can be filtered by altering the settings in the
/sys/kernel/debug/tracing/set_ftrace_filter file. If no filters are specified in the
file, all functions are traced. Use the cat to view the current filters:

~]# cat /sys/kernel/debug/tracing/set_ftrace_filter

8. To change the filters, echo the name of the function to be traced. The filter allows the use of a
* wildcard at the beginning or end of a search term.

The * wildcard can also be used at both the beginning and end of a word. For example:
irq will select all functions that contain irq in the name. The wildcard cannot, however,
be used inside a word.

Encasing the search term and the wildcard character in double quotation marks ensures that
the shell will not attempt to expand the search to the present working directory.

Some examples of filters are:

Trace only the schedule function:

~]# echo schedule > /sys/kernel/debug/tracing/set_ftrace_filter

Trace all functions that end with lock:

~]# echo "*lock" > /sys/kernel/debug/tracing/set_ftrace_filter

Trace all functions that start with spin_:

~]# echo "spin_*" > /sys/kernel/debug/tracing/set_ftrace_filter

Trace all functions with cpu in the name:

~]# echo "*cpu*" > /sys/kernel/debug/tracing/set_ftrace_filter

Note

If you use a single > with the echo command, it will override any existing value in the
file. If you wish to append the value to the file, use >> instead.

3.10. Latency Tracing Using trace-cmd

Chapt er 3. Realt ime- Specific T uning

31

trace-cmd is a front-end tool to f t race . It can enable the f t race interactions described earlier
without needing to write into the /sys/kernel/debug/tracing/ directory. It can be installed
without the special tracing kernel variants, and it does not add any overhead when it is installed.

1. To install the trace-cmd tool, run the following command as root:

~]# yum install trace-cmd

2. To start the utility, type trace-cmd at the shell prompt, along with the options you require,
using the following syntax:

~]# trace-cmd command

Some examples of commands are:

~]# trace-cmd record -p function myapp

Enable and start recording functions executing within the kernel while myapp runs. It
records functions from all CPUS and all tasks, even those not related to myapp.

~]# trace-cmd report

Display the result.

~]# trace-cmd record -p function -l 'sched*' myapp

Record only functions that start with sched while myapp runs.

~]# trace-cmd start -e irq

Enable all the IRQ events.

~]# trace-cmd start -p wakeup_rt

Start the wakeup_rt tracer.

~]# trace-cmd start -p preemptirqsoff -d

Start the preemptirqsoff tracer but disable function tracing in doing so. Note: the
version of trace-cmd in Red Hat Enterprise Linux 7 turns off ftrace_enabled instead of
using the function-trace option. You can enable it again with trace-cmd start -p
function.

~]# trace-cmd start -p nop

Restore the state in which the system was before t race-cmd started modifying it. This is
important if you want to use the debugfs file system after using t race-cmd , whether or not
the system was restarted in the meantime.

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

32

Note

See the trace-cmd(1) man page for a complete list of commands and options. All the
individual commands also have their own man pages, trace-cmd-command. For further
information about event tracing and function tracer refer to Appendix A, Event Tracing
and Appendix B, Detailed Description of Ftrace.

3. In this example, the trace-cmd utility will trace a single trace point:

~]# trace-cmd record -e sched_wakeup ls /bin

3.11. Using sched_nr_migrate t o Limit SCHED_OTHER Task Migrat ion.

If a SCHED_OTHER task spawns a large number of other tasks, they will all run on the same CPU.
The migration task or softirq will try to balance these tasks so they can run on idle CPUs. The
sched_nr_migrate option can be set to specify the number of tasks that will move at a time.
Because realtime tasks have a different way to migrate, they are not directly affected by this, however
when softirq moves the tasks it locks the run queue spinlock that is needed to disable interrupts. If
there are a large number of tasks that need to be moved, it will occur while interrupts are disabled, so
no timer events or wakeups will happen simultaneously. This can cause severe latencies for realtime
tasks when the sched_nr_migrate is set to a large value.

Procedure 3.4 . Adjust ing the Value of the sched_nr_migrate Variab le

1. Increasing the sched_nr_migrate variable gives high performance from SCHED_OTHER
threads that spawn lots of tasks, at the expense of realtime latencies. For low realtime task
latency at the expense of SCHED_OTHER task performance, the value must be lowered. The
default value is 8.

2. To adjust the value of the sched_nr_migrate variable, you can echo the value directly to
/proc/sys/kernel/sched_nr_migrate:

~]# echo 2 > /proc/sys/kernel/sched_nr_migrate

3.12. Real T ime Throt t ling

Real T ime Scheduling Issues

The two realtime scheduling policies in Red Hat Enterprise Linux for Real Time share one main
characteristic: they run until they are preempted by a higher priority thread or until they "wait" , either
by sleeping or performing I/O. In the case of SCHED_RR , a thread may be preempted by the operating
system so that another thread of equal SCHED_RR priority may run. In any of these cases, no
provision is made by the POSIX specifications that define the policies for allowing lower priority
threads to get any CPU time.

This characteristic of realtime threads means that it is quite easy to write an application which
monopolizes 100% of a given CPU. At first glance this sounds like it might be a good idea, but in
reality it causes lots of headaches for the operating system. The OS is responsible for managing
both system-wide and per-CPU resources and must periodically examine data structures describing
these resources and perform housekeeping activities with them. If a core is monopolized by a
SCHED_FIFO thread, it cannot performe the housekeeping tasks and eventually the entire system
becomes unstable, potentially causing a crash.

Chapt er 3. Realt ime- Specific T uning

33

On the Red Hat Enterprise Linux for Real Time kernel, interrupt handlers run as threads with a
SCHED_FIFO priority (default: 50). A cpu-hog thread with a SCHED_FIFO or SCHED_RR policy
higher than the interrupt handler threads can prevent interrupt handlers from running and cause
programs waiting for data signaled by those interrupts to be starved and fail.

Real T ime Scheduler Throt t ling

Red Hat Enterprise Linux for Real Time comes with a safeguard mechanism that allows the system
administrator to allocate bandwith for use by realtime tasks. This safeguard mechanism is known as
realtime scheduler throttling and is controlled by two parameters in the /proc file system:

/proc/sys/kernel/sched_rt_period_us

Defines the period in μs (microseconds) to be considered as 100% of CPU bandwidth. The
default value is 1,000,000 μs (1 second). Changes to the value of the period must be very
well thought out as a period too long or too small are equally dangerous.

/proc/sys/kernel/sched_rt_runtime_us

The total bandwidth available to all realtime tasks. The default values is 950,000 μs (0.95
s) or, in other words, 95% of the CPU bandwidth. Setting the value to -1 means that realtime
tasks may use up to 100% of CPU times. This is only adequate when the realtime tasks are
well engineered and have no obvious caveats such as unbounded polling loops.

The default values for the realtime throttling mechanism define that 95% of the CPU time can be used
by realtime tasks. The remaining 5% will be devoted to non-realtime tasks (tasks running under
SCHED_OTHER and similar scheduling policies). It is important to note that if a single realtime task
occupies that 95% CPU time slot, the remaining realtime tasks on that CPU will not run. The
remaining 5% of CPU time is used only by non-realtime tasks.

The impact of the default values is two-fold: rogue realtime tasks will not lock up the system by not
allowing non-realtime tasks to run and, on the other hand, realtime tasks will have at most 95% of
CPU time available from them, probably affecting their performance.

References

From the kernel documentation, which is available in the kernel-rt-doc package:

/usr/share/doc/kernel-rt-doc-3.10.0/Documentation/scheduler/sched-rt-
group.txt

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

34

Chapter 4. Application Tuning and Deployment

This chapter contains tips related to enhancing and developing Red Hat Enterprise Linux for Real
Time applications.

Note

In general, try to use POSIX (Portable Operating System Interface) defined APIs. Red Hat
Enterprise Linux for Real Time is compliant with POSIX standards, and latency reduction in the
Red Hat Enterprise Linux for Real Time kernel is also based on POSIX.

Further Reading

For further reading on developing your own Red Hat Enterprise Linux for Real Time applications,
start by reading the RTWiki Article.

4.1. Signal Processing in Realt ime Applicat ions

Traditional UNIX and POSIX signals have their uses, especially for error handling, but they are not
suitable for use in realtime applications as an event delivery mechanism. The reason for this is that
the current Linux kernel signal handling code is quite complex, due mainly to legacy behavior and
the multitude of APIs that need to be supported. This complexity means that the code paths that are
taken when delivering a signal are not always optimal, and quite long latencies can be experienced
by applications.

The original motivation behind UNIX™ signals was to multiplex one thread of control (the process)
between different " threads" of execution. Signals behave somewhat like operating system interrupts -
when a signal is delivered to an application, the application's context is saved and it starts executing
a previously registered signal handler. Once the signal handler has completed, the application
returns to executing where it was when the signal was delivered. This can get complicated in practice.

Signals are too non-deterministic to trust them in a realtime application. A better option is to use
POSIX Threads (pthreads) to distribute your workload and communicate between various
components. You can coordinate groups of threads using the pthreads mechanisms of mutexes,
condition variables and barriers and trust that the code paths through these relatively new
constructs are much cleaner than the legacy handling code for signals.

Further Reading

For more information, or for further reading, the following links are related to the information given in
this section.

RTWiki's Build an RT Application

Ulrich Drepper's Requirements of the POSIX Signal Model

4.2. Using sched_yield and Other Synchronizat ion Mechanisms

The sched_yield system call is used by a thread allowing other threads a chance to run. Often
when sched_yield is used, the thread can go to the end of the run queues, taking a long time to be
scheduled again, or it can be rescheduled straight away, creating a busy loop on the CPU. The
scheduler is better able to determine when and if there are actually other threads wanting to run.

Chapt er 4 . Applicat ion T uning and Deployment

35

http://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
http://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
http://www.akkadia.org/drepper/posix-signal-model.xml

Avoid using sched_yield on any RT task.

For more information, see Arnaldo Carvalho de Melo's paper on Earthquaky kernel interfaces.

Related Manual Pages

For more information, or for further reading, the following man pages are related to the information
given in this section.

pthread.h(P)

sched_yield(2)

sched_yield(3p)

4.3. Mutex Opt ions

Procedure 4 .1. Standard Mutex Creat ion

Mutual exclusion (mutex) algorithms are used to prevent processes simultaneously using a common
resource. A fast user-space mutex (futex) is a tool that allows a user-space thread to claim a mutex
without requiring a context switch to kernel space, provided the mutex is not already held by another
thread.

Note

In this document, we use the terms futex and mutex to describe POSIX thread (pthread) mutex
constructs.

1. When you initialize a pthread_mutex_t object with the standard attributes, it will create a
private, non-recursive, non-robust and non priority inheritance capable mutex.

2. Under pthreads, mutexes can be initialized with the following strings:

pthread_mutex_t my_mutex;

pthread_mutex_init(&my_mutex, NULL);

3. In this case, your application will not benefit from the advantages provided by the pthreads
API and the Red Hat Enterprise Linux for Real Time kernel. There are a number of mutex
options that must be considered when writing or porting an application.

Procedure 4 .2. Advanced Mutex Opt ions

In order to define any additional capabilities for the mutex you will need to create a
pthread_mutexattr_t object. This object will store the defined attributes for the futex.

Important

For the sake of brevity, these examples do not include a check of the return value of the
function. This is a basic safety procedure and one that you must always perform.

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

36

http://vger.kernel.org/~acme/unbehaved.txt

1. Creating the mutex object:

pthread_mutex_t my_mutex;

pthread_mutexattr_t my_mutex_attr;

pthread_mutexattr_init(&my_mutex_attr);

2. Shared and Private mutexes:

Shared mutexes can be used between processes, however they can create a lot more
overhead.

pthread_mutexattr_setpshared(&my_mutex_attr,
PTHREAD_PROCESS_SHARED);

3. Realtime priority inheritance:

Priority inversion problems can be avoided by using priority inheritance.

pthread_mutexattr_setprotocol(&my_mutex_attr,
PTHREAD_PRIO_INHERIT);

4. Robust mutexes:

Robust mutexes are released when the owner dies, however this can also come at a high
overhead cost. _NP in this string indicates that this option is non-POSIX or not portable.

pthread_mutexattr_setrobust_np(&my_mutex_attr,
PTHREAD_MUTEX_ROBUST_NP);

5. Mutex initialization:

Once the attributes are set, initialize a mutex using those properties.

pthread_mutex_init(&my_mutex, &my_mutex_attr);

6. Cleaning up the attributes object:

After the mutex has been created, you can keep the attribute object in order to initialize more
mutexes of the same type, or you can clean it up. The mutex is not affected in either case. To
clean up the attribute object, use the _destroy command.

pthread_mutexattr_destroy(&my_mutex_attr);

The mutex will now operate as a regular pthread_mutex, and can be locked, unlocked and
destroyed as normal.

Related Manual Pages

For more information, or for further reading, the following man pages are related to the information
given in this section.

futex(7)

Chapt er 4 . Applicat ion T uning and Deployment

37

pthread_mutex_destroy(P)

For information on pthread_mutex_t and pthread_mutex_init

pthread_mutexattr_setprotocol(3p)

For information on pthread_mutexattr_setprotocol and
pthread_mutexattr_getprotocol

pthread_mutexattr_setprioceiling(3p)

For information on pthread_mutexattr_setprioceiling and
pthread_mutexattr_getprioceiling

4.4 . TCP_NODELAY and Small Buffer Writes

As discussed briefly in Transmission Control Protocol (TCP), by default TCP uses Nagle's algorithm
to collect small outgoing packets to send all at once. This can have a detrimental effect on latency.

Procedure 4 .3. Using TCP_NODELAY and TCP_CORK to Improve Network Latency

1. Applications that require lower latency on every packet sent must be run on sockets with
TCP_NODELAY enabled. It can be enabled through the setsockopt command with the
sockets API:

int one = 1;

setsockopt(descriptor, SOL_TCP, TCP_NODELAY, &one, sizeof(one));

2. For this to be used effectively, applications must avoid doing small, logically related buffer
writes. Because TCP_NODELAY is enabled, these small writes will make TCP send these
multiple buffers as individual packets, which can result in poor overall performance.

If applications have several buffers that are logically related, and are to be sent as one
packet, it is possible to build a contiguous packet in memory and then send the logical
packet to TCP on a socket configured with TCP_NODELAY .

Alternatively, create an I/O vector and pass it to the kernel using writev on a socket
configured with TCP_NODELAY .

3. Another option is to use TCP_CORK, which tells TCP to wait for the application to remove the
cork before sending any packets. This command will cause the buffers it receives to be
appended to the existing buffers. This allows applications to build a packet in kernel space,
which can be required when using different libraries that provides abstractions for layers. To
enable TCP_CORK, set it to a value of 1 using the setsockopt sockets API (this is known as
"corking the socket"):

int one = 1;

setsockopt(descriptor, SOL_TCP, TCP_CORK, &one, sizeof(one));

4. When the logical packet has been built in the kernel by the various components in the
application, tell TCP to remove the cork. TCP will send the accumulated logical packet right
away, without waiting for any further packets from the application.

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

38

int zero = 0;

setsockopt(descriptor, SOL_TCP, TCP_CORK, &zero, sizeof(zero));

Related Manual Pages

For more information, or for further reading, the following man pages are related to the information
given in this section.

tcp(7)

setsockopt(3p)

setsockopt(2)

4.5. Set t ing Realt ime Scheduler Priorit ies

Using rtctl to set scheduler priorities is described in Procedure 3.1, “Using rtctl to Set Priorities” .
In the example given in that procedure, some kernel threads have been given a very high priority.
This is to have the default priorities integrate well with the requirements of the Real Time Specification
for Java (RTSJ). RTSJ requires a range of priorities from 10 to 89.

For deployments where RTSJ is not in use, there is a wide range of scheduling priorities below 90
which are at the disposal of applications. It is usually dangerous for user level applications to run at
priority 50 and above - despite the fact that the capability exists. Preventing essential system services
from running can result in unpredictable behavior, including blocked network traffic, blocked virtual
memory paging and data corruption due to blocked filesystem journaling.

Use extreme caution when scheduling any application thread above priority 49. If any application
threads are scheduled above priority 89, ensure that the threads only run a very short code path.
Failure to do so would undermine the low latency capabilities of the Red Hat Enterprise Linux for Real
Time kernel.

Set t ing Realt ime Priority for Non-privileged Users

Generally, only root users are able to change priority and scheduling information. If you require non-
privileged users to be able to adjust these settings, the best method is to add the user to the
realtime group.

Important

You can also change user privileges by editing the /etc/security/limits.conf file. This
has a potential for duplication and can render the system unusable for regular users. If you do
decide to edit this file, exercise caution and always create a copy before making changes.

4.6. Loading Dynamic Libraries

When developing your realtime application, consider resolving symbols at startup. Although it can
slow down program initialization, it is one way to avoid non-deterministic latencies during program
execution.

Chapt er 4 . Applicat ion T uning and Deployment

39

Dynamic Libraries can be instructed to load at application startup by setting the LD_BIND_NOW
variable with ld.so , the dynamic linker/loader.

The following is an example shell script. This script exports the LD_BIND_NOW variable with a value
of 1, then runs a program with a scheduler policy of FIFO and a priority of 1.

#!/bin/sh

LD_BIND_NOW=1
export LD_BIND_NOW

chrt --fifo 1 /opt/myapp/myapp-server &

Related Manual Pages

For more information, or for further reading, the following man pages are related to the information
given in this section.

ld.so(8)

4.7. Using _COARSE POSIX Clocks for Applicat ion T imestamping

Applications that frequently perform timestamps are affected by the cost of reading the clock. A high
cost and amount of time used to read the clock can have a negative impact on the application's
performance.

To illustrate that concept, imagine using a clock, inside a drawer, to time events being observed. If
every time one has to open the drawer, get the clock and only then read the time, the cost of reading
the clock is too high and can lead to missing events or incorrectly timestamping them.

Conversely, a clock on the wall would be faster to read, and timestamping would produce less
interference to the observed events. Standing right in front of that wall clock would make it even faster
to obtain time readings.

Likewise, this performance gain (in reducing the cost of reading the clock) can be obtained by
selecting a hardware clock that has a faster reading mechanism. In Red Hat Enterprise Linux for Real
Time, a further performance gain can be acquired by using POSIX clocks with the
clock_gettime() function to produce clock readings with the lowest cost possible.

POSIX Clocks

POSIX clocks is a standard for implementing and representing time sources. The POSIX clocks can
be selected by each application, without affecting other applications in the system. This is in contrast
to the hardware clocks as described in Section 2.6, “Using Hardware Clocks for System
Timestamping” , which is selected by the kernel and implemented across the system.

The function used to read a given POSIX clock is clock_gettime(), which is defined at
<time.h>. clock_gettime() has a counterpart in the kernel, in the form of a system call. When
the user process calls clock_gettime(), the corresponding C library (glibc) calls the
sys_clock_gettime() system call which performs the requested operation and then returns the
result to the user program.

However, this context switch from the user application to the kernel has a cost. Even though this cost
is very low, if the operation is repeated thousands of times, the accumulated cost can have an impact
on the overall performance of the application. To avoid that context switch to the kernel, thus making
it faster to read the clock, support for the CLOCK_MONOTONIC_COARSE and

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

4 0

CLOCK_REALTIME_COARSE POSIX clocks was created in the form of a VDSO library function.

Time readings performed by clock_gettime(), using one of the _COARSE clock variants, do not
require kernel intervention and are executed entirely in user space, which yields a significant
performance gain. Time readings for _COARSE clocks have a millisecond (ms) resolution, meaning
that time intervals smaller than 1ms will not be recorded. The _COARSE variants of the POSIX clocks
are suitable for any application that can accommodate millisecond clock resolution, and the benefits
are more evident on systems which use hardware clocks with high reading costs.

Note

To compare the cost and resolution of reading POSIX clocks with and without the _COARSE
prefix, see the Red Hat Enterprise Linux for Real Time Realtime Reference Guide.

Example 4 .1. Using the _COARSE Clock Variant in clock_gettime

#include <time.h>

main()
{
 int rc;
 long i;
 struct timespec ts;

 for(i=0; i<10000000; i++) {
 rc = clock_gettime(CLOCK_MONOTONIC_COARSE, &ts);
 }
}

You can improve upon the example above, for example by using more strings to verify the return
code of clock_gettime(), to verify the value of the rc variable, or to ensure the content of the ts
structure is to be trusted. The clock_gettime() manpage provides more information to help you
write more reliable applications.

Important

Programs using the clock_gettime() function must be linked with the rt library by adding
'-lrt' to the gcc command line.

~]$ gcc clock_timing.c -o clock_timing -lrt

Related Manual Pages

For more information, or for further reading, the following man page and books are related to the
information given in this section.

clock_gettime()

Linux System Programming by Robert Love

Chapt er 4 . Applicat ion T uning and Deployment

4 1

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux_for_Real_Time/7/html/Installation_Guide/index.html

Understanding The Linux Kernel by Daniel P. Bovet and Marco Cesati

4.8. About Perf

Perf is a performance analysis tool. It provides a simple command line interface and separates the
CPU hardware difference in Linux performance measurements. Perf is based on the perf_events
interface exported by the kernel.

One advantage of perf is that it is both kernel and architecture neutral. The analysis data can be
reviewed without requiring specific system configuration.

To be able to use perf , install the perf package by running the following command as root:

~]# yum install perf

Perf has the following options. Examples of the most common options and features follow, but further
information on all options are available with the perf help COMMAND .

Example 4 .2. Example of perf Opt ions

]# perf

 usage: perf [--version] [--help] COMMAND [ARGS]

 The most commonly used perf commands are:
 annotate Read perf.data (created by perf record) and display
annotated code
 archive Create archive with object files with build-ids
found in perf.data file
 bench General framework for benchmark suites
 buildid-cache Manage build-id cache.
 buildid-list List the buildids in a perf.data file
 diff Read two perf.data files and display the
differential profile
 evlist List the event names in a perf.data file
 inject Filter to augment the events stream with additional
information
 kmem Tool to trace/measure kernel memory(slab) properties
 kvm Tool to trace/measure kvm guest os
 list List all symbolic event types
 lock Analyze lock events
 record Run a command and record its profile into perf.data
 report Read perf.data (created by perf record) and display
the profile
 sched Tool to trace/measure scheduler properties
(latencies)
 script Read perf.data (created by perf record) and display
trace output
 stat Run a command and gather performance counter
statistics
 test Runs sanity tests.
 timechart Tool to visualize total system behavior during a
workload
 top System profiling tool.

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

4 2

 trace strace inspired tool
 probe Define new dynamic tracepoints

See 'pert help COMMAND' for more information on a specific command.

These following examples show a selection of the most used features, including record, archive,
report, stat and list.

Example 4 .3. Perf Record

The perf record feature is used for collecting system-wide statistics. It can be used in all
processors.

~]# perf record -a
^C[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 0.725 MB perf.data (~31655 samples)]

In this example, all CPUs are denoted with the option -a, and the process was terminated after a
few seconds. The results show that it collected 0.725 MB of data, and created the following file of
results.

~]# ls
perf.data

Example 4 .4 . Example of the Perf Report and Archive Features

The data from the perf record feature can now be directly investigated using the perf report
commands. If the samples are to be analyzed on a different system, use the perf archive
command. This will not always be necessary as the DSOs (such as binaries and libraries) may
already be present in the analysis system, such as the ~/.debug/ cache or if both systems have
the same set of binaries.

Run the archive command to create an archive of results.

~]# perf archive

Collect the results as a tar archive to prepare the data for the pref report.

~]# tar xvf perf.data.tar.bz2 -C ~/.debug

Run the perf report to analyze the tarball.

~]# perf report

The output of the report is sorted according to the maximum CPU usage in percentage by the
application. It shows if the sample has occurred in kernel or user space of the process.

A kernel sample, if not taking place in a kernel module will be marked by the notation
[kernel.kallsyms]. If a kernel sample is taking place in the kernel module, it will be marked as
[module], [ext4]. For a process in user space, the results might show the shared library linked
with the process.

Chapt er 4 . Applicat ion T uning and Deployment

4 3

The report denotes whether the process also occurs in kernel or user space. The result [.]
indicates user space and [k] indicates kernel space. Finer grained details are available for
review, including data appropriate for experienced perf developers.

Example 4 .5. Example of the Perf List and Stat Features

The perf list and stat features show all the hardware or software trace points that can be probed.

The following example shows how to view the number of context switches with the perf stat
feature.

~]# perf stat -e context-switches -a sleep 5
Performance counter stats for 'sleep 5':

 15,619 context-switches

 5.002060064 seconds time elapsed

The results show that in 5 seconds, 15619 context switches took place. Filesystem activity is also
viewable, as shown in the following example script.

~]# for i in {1..100}; do touch /tmp/$i; sleep 1; done

In another terminal, run the following perf stat feature.

~]# perf stat -e ext4:ext4_request_inode -a sleep 5
 Performance counter stats for 'sleep 5':

 5 ext4:ext4_request_inode

 5.002253620 seconds time elapsed

The results show that in 5 seconds the script asked to create 5 files, indicating that there are 5
inode requests.

There are a range of available options to get the hardware tracepoint activity. The following
example shows a selection of the options in the perf list feature.

List of pre-defined events (to be used in -e):
 cpu-cycles OR cycles [Hardware event]
 stalled-cycles-frontend OR idle-cycles-frontend [Hardware event]
 stalled-cycles-backend OR idle-cycles-backend [Hardware event]
 instructions [Hardware event]
 cache-references [Hardware event]
 cache-misses [Hardware event]
 branch-instructions OR branches [Hardware event]
 branch-misses [Hardware event]
 bus-cycles [Hardware event]

 cpu-clock [Software event]
 task-clock [Software event]
 page-faults OR faults [Software event]
 minor-faults [Software event]
 major-faults [Software event]

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

4 4

 context-switches OR cs [Software event]
 cpu-migrations OR migrations [Software event]
 alignment-faults [Software event]
 emulation-faults [Software event]
 ...[output truncated]...

Important

Sampling at too high a frequency can negatively impact the performace of your realtime
system.

Chapt er 4 . Applicat ion T uning and Deployment

4 5

Chapter 5. More Information

5.1. Report ing Bugs

Diagnosing a Bug

Before you file a bug report, follow these steps to diagnose where the problem has been introduced.
This will greatly assist in rectifying the problem.

1. Check that you have the latest version of the Red Hat Enterprise Linux 7 kernel, then boot into
it from the GRUB menu. Try reproducing the problem with the standard kernel. If the problem
still occurs, report a bug against Red Hat Enterprise Linux 7.

2. If the problem does not occur when using the standard kernel, then the bug is probably the
result of changes introduced in the Red Hat Enterprise Linux for Real Time specific
enhancements Red Hat has applied on top of the baseline (3.10.0) kernel.

Report ing a Bug

If you have determined that the bug is specific to Red Hat Enterprise Linux for Real Time follow these
instructions to enter a bug report:

1. Create a Bugzilla account if you do not have it yet..

2. Click on Enter A New Bug Report. Log in if necessary.

3. Select the Red Hat classification.

4. Select the Red Hat Enterprise Linux 7 product.

5. If it is a kernel issue, enter kernel-rt as the component. Otherwise, enter the name of the
affected user-space component, such as trace-cmd .

6. Continue to enter the bug information by giving a detailed problem description. When
entering the problem description be sure to include details of whether you were able to
reproduce the problem on the standard Red Hat Enterprise Linux 7 kernel.

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

4 6

https://bugzilla.redhat.com/createaccount.cgi
https://bugzilla.redhat.com/enter_bug.cgi

Event Tracing

See Event Tracing by Theodore Ts'o.

Event T racing

4 7

https://www.kernel.org/doc/Documentation/trace/events.txt

Detailed Description of Ftrace

ftrace - Linux kernel internal tracer

Introduction

Ftrace is an internal tracer for the Linux kernel. It is designed to
follow the processing of what happens within the kernel as that is
normally a black box. It allows the user to trace kernel functions
that are called in real time, as well as to see various events like
tasks scheduling, interrupts, disk activity and other services that
the kernel provides.

Ftrace was intorduced to Linux in the 2.6.27 kernel, and has increased
in functionality ever since. It is not meant to trace what is happening
inside user applications, but can be used to trace within system calls
that user applications make.

The Debug File System

The user interface for ftrace is a series of files within the debug
file system that is usually mounted at /sys/kernel/debug. The ftrace
files are in the tracing directory that can be accessed at
/sys/kernel/debug/tracing.

Note, there is also a user interface tool called trace-cmd. See later
in this document for more information about that tool.

In order to mount the debug filesystem, perform the following:

 mount -t debugfs nodev /sys/kernel/debug

Then you can change directory into the ftrace tracing location:

 cd /sys/kernel/debug/tracing

Note, all these files can only be modified by root user, as enabling
tracing can have an impact on the performance of the system.

Ftrace files

The main files within this directory are:

 trace - the file that shows the output of a ftrace trace. This is
 really a snapshot of the trace in time, as it stops tracing as
 this file is read, and it does not consume the events read.
 That is, if the user disabled tracing and read this file, it
 will always report the same thing every time its read.

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

4 8

 Also, to clear the trace buffer, simply write into this file.

 ># echo > trace

 This will erase the entire contents of the trace buffer.

 trace_pipe - like "trace" but is used to read the trace live. It is
 a producer / consumer trace, where each read will consume the
 event that is read. But this can be used to see an active trace
 without stopping the trace as it is read.

 available_tracers - a list of ftrace tracers that have been compiled
 into the kernel.

 current_tracer - enables or disables a ftrace tracer

 events - a directory that contains events to trace and can be used
 to enable or disable events as well as set filters for the events

 tracing_on - disable and enable recording to the ftrace buffer.
 Note, disabling tracing via the tracing_on file does not disable
 the actual tracing that is happening inside the kernel. It only
 disables writing to the buffer. The work to do the trace still
 happens, but the data does not go anywhere.

There are several other files, but we will get to them as they come
up with functionalities of the tracers.

Tracers and Events

Tracers have specific functionality within the kernel, where as events
are just some kind of data that is recorded into the ftrace buffer.
To understand this more, we need to take a look at the tracers themselves
and the events as well.

nop

The default tracer is called "nop". It is just a nop tracer, and does not
provide any tracing facility itself. But, as events may interleave into
any tracer, the "nop" tracer is what is used if you are only interested
in tracing events.

When the "nop" tracer is active and the trace buffer is empty, the
"trace"
file shows the following:

># cat trace
tracer: nop
#
entries-in-buffer/entries-written: 0/0 #P:8
#
_-------=> irqs-off
/ _------=> need-resched

Det ailed Descript ion of Ft race

4 9

|/ _-----=> need-resched_lazy
||/ _----=> hardirq/softirq
|||/ _---=> preempt-depth
||||/ _--=> preempt-lazy-depth
||||| / _-=> migrate-disable
|||||| / delay
TASK-PID CPU# ||||||| TIMESTAMP FUNCTION
| | | ||||||| | |

It starts with what tracer is active and then gives a default header.

Now to enable an event, you must write an ASCII '1' into the "enable"
file for the particular event.

># echo 1 > events/sched/sched_switch/enable
># cat trace
tracer: nop
#
entries-in-buffer/entries-written: 463/463 #P:8
#
_-------=> irqs-off
/ _------=> need-resched
|/ _-----=> need-resched_lazy
||/ _----=> hardirq/softirq
|||/ _---=> preempt-depth
||||/ _--=> preempt-lazy-depth
||||| / _-=> migrate-disable
|||||| / delay
TASK-PID CPU# ||||||| TIMESTAMP FUNCTION
| | | ||||||| | |
 bash-1367 [007] d...... 11927.750484: sched_switch:
prev_comm=bash prev_pid=1367 prev_prio=120 prev_state=S ==>
next_comm=kworker/7:1 next_pid=121 next_prio=120
 kworker/7:1-121 [007] d...... 11927.750514: sched_switch:
prev_comm=kworker/7:1 prev_pid=121 prev_prio=120 prev_state=S ==>
next_comm=swapper/7 next_pid=0 next_prio=120
 <idle>-0 [000] d...... 11927.750531: sched_switch:
prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==>
next_comm=sshd next_pid=1365 next_prio=120
 <idle>-0 [007] d...... 11927.750555: sched_switch:
prev_comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=R ==>
next_comm=kworker/7:1 next_pid=121 next_prio=120
 kworker/7:1-121 [007] d...... 11927.750575: sched_switch:
prev_comm=kworker/7:1 prev_pid=121 prev_prio=120 prev_state=S ==>
next_comm=swapper/7 next_pid=0 next_prio=120
 sshd-1365 [000] d...... 11927.750673: sched_switch:
prev_comm=sshd prev_pid=1365 prev_prio=120 prev_state=S ==>
next_comm=swapper/0 next_pid=0 next_prio=120
 <idle>-0 [001] d...... 11927.752568: sched_switch:
prev_comm=swapper/1 prev_pid=0 prev_prio=120 prev_state=R ==>
next_comm=kworker/1:1 next_pid=57 next_prio=120
 <idle>-0 [002] d...... 11927.752589: sched_switch:
prev_comm=swapper/2 prev_pid=0 prev_prio=120 prev_state=R ==>
next_comm=rcu_sched next_pid=10 next_prio=120
 kworker/1:1-57 [001] d...... 11927.752590: sched_switch:

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

50

prev_comm=kworker/1:1 prev_pid=57 prev_prio=120 prev_state=S ==>
next_comm=swapper/1 next_pid=0 next_prio=120
 rcu_sched-10 [002] d...... 11927.752610: sched_switch:
prev_comm=rcu_sched prev_pid=10 prev_prio=120 prev_state=S ==>
next_comm=swapper/2 next_pid=0 next_prio=120
 <idle>-0 [007] d...... 11927.753548: sched_switch:
prev_comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=R ==>
next_comm=rcu_sched next_pid=10 next_prio=120
 rcu_sched-10 [007] d...... 11927.753568: sched_switch:
prev_comm=rcu_sched prev_pid=10 prev_prio=120 prev_state=S ==>
next_comm=swapper/7 next_pid=0 next_prio=120
 <idle>-0 [007] d...... 11927.755538: sched_switch:
prev_comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=R ==>
next_comm=kworker/7:1 next_pid=121 next_prio=120

As you can see there is quite a lot of information that is displayed
by simply enabling the sched_switch event.

Events

The events are broken up into "systems". Each system of events has its
own directory under the "events" directory located in the ftrace
"tracing"
directory in the debug file system.

># ls -F events
block/ header_event lock/ printk/ skb/ vsyscall/
compaction/ header_page mce/ random/ sock/
workqueue/
drm/ i915/ migrate/ raw_syscalls/ sunrpc/ writeback/
enable irq/ module/ rcu/ syscalls/
ext4/ jbd2/ napi/ rpm/ task/
ftrace/ kmem/ net/ sched/ timer/
hda/ kvm/ oom/ scsi/ udp/
hda_intel/ kvmmmu/ power/ signal/ vmscan/

Each of these directories represent a system or group of events. Notice
that
there's three files in this directory:

enable
header_event
header_page

The only one you should be concerned about is the "enable" file, as that
will enable all events when an ASCII '1' is written into it and disable
all events when an ASCII '0' is written into it.

The header_event and header_page provides information necessary for
the trace-cmd tool.

Each of these directories shows the events that are within that system:

># ls -F events/sched

Det ailed Descript ion of Ft race

51

enable sched_process_exit/ sched_stat_sleep/
filter sched_process_fork/ sched_stat_wait/
sched_kthread_stop/ sched_process_free/ sched_switch/
sched_kthread_stop_ret/ sched_process_wait/ sched_wait_task/
sched_migrate_task/ sched_stat_blocked/ sched_wakeup/
sched_pi_setprio/ sched_stat_iowait/ sched_wakeup_new/
sched_process_exec/ sched_stat_runtime/

Each directory here represents a single event. Notice that there's two
files in the system directory:

enable
filter

The "enable" file here can enable or disable all events within the system
when an ASCII '1' or '0', respectively, is written to this file.

The "filter" file will be described shortly.

Within the individual event directories exist control files:

># ls -F events/sched/sched_wakeup/
enable filter format id

We already used the "enable" file. Now to explain the other files.

The "format" file shows the fields that are written when the event
is enabled, as well as the fields that can be used for the filter.

The "id" file is used by the perf tool and is not something that needs
to be delt with here.

># cat events/sched/sched_wakeup/format
name: sched_wakeup
ID: 249
format:
 field:unsigned short common_type; offset:0; size:2;
signed:0;
 field:unsigned char common_flags; offset:2; size:1;
signed:0;
 field:unsigned char common_preempt_count; offset:3;
size:1; signed:0;
 field:int common_pid; offset:4; size:4;
signed:1;
 field:unsigned short common_migrate_disable; offset:8;
size:2; signed:0;
 field:unsigned short common_padding; offset:10;
size:2; signed:0;

 field:char comm[16]; offset:16; size:16;
signed:1;
 fieldid_t pid; offset:32; size:4; signed:1;

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

52

 field:int prio; offset:36; size:4; signed:1;
 field:int success; offset:40; size:4;
signed:1;
 field:int target_cpu; offset:44; size:4;
signed:1;

print fmt: "comm=%s pid=%d prio=%d success=%d target_cpu=%03d", REC-
>comm, REC->pid, REC->prio, REC->success, REC->target_cpu

This file is also used by perf and trace-cmd to tell how to read the
raw binary output from the tracing buffers for the event. But what you
need to know is the field names, as they are used by the filtering.

The first set of fields before the blank line are the common fields that
exist for all events. The specific fields for the event come after the
blank line and here it starts with "comm".

Filtering events

There are times when you may not want to trace all events, but only
events where one of the event's fields contains a certain value.
The "filter" file allows for this.

The filter provides the following predicates:

For numerical fields:

 ==, !=, <, <=, >, >=

For string fields:

 ==, !=, ~

Logical && and || as well as parenthesis are also acceptable.

The syntax is

 <filter> = FIELD <pred-num> | FIELD <pred-string> |
 '(' <filter> ')' | <filter> '&&' <filter> | <filter> '||' <filter>

 <pred-num> = <num-op> <number>

 <pred-string> = <string-op> <string>

 <num-op> = '==' | '!=' | '<' | '<=' | '>' | '>='

 <string-op> = '==' | '!=' | '~'

 <number> = <digits> | '0x'<hex-number>

 <digits> = [0-9] | <digits><digits>

Det ailed Descript ion of Ft race

53

 <hex-number> = [0-9] | [a-f] | [A-F] | <hex-number><hex-number>

 <string> = '"' VALUE '"'

The glob expression '~' is a very simple glob. it can only be:

 <glob> = VALUE | '*' VALUE | VALUE '*' | '*' VALUE '*'

That is, anything more complex will not be valid. Such as:

 VALUE '*' VALUE

What the glob does is to match a string with wild cards at the beginning
or end or both, of a value:

 comm ~ "kwork*"

Example:

To trace all schedule switches to a real time task:

># echo 'next_prio < 100' > events/sched/sched_switch/filter
># cat events/sched/sched_switch/filter
next_prio < 100
># cat trace
tracer: nop
#
entries-in-buffer/entries-written: 11/11 #P:8
#
_-------=> irqs-off
/ _------=> need-resched
|/ _-----=> need-resched_lazy
||/ _----=> hardirq/softirq
|||/ _---=> preempt-depth
||||/ _--=> preempt-lazy-depth
||||| / _-=> migrate-disable
|||||| / delay
TASK-PID CPU# ||||||| TIMESTAMP FUNCTION
| | | ||||||| | |
 <idle>-0 [001] d...... 14331.192687: sched_switch:
prev_comm=swapper/1 prev_pid=0 prev_prio=120 prev_state=R ==>
next_comm=rtkit-daemon next_pid=992 next_prio=0
 <idle>-0 [001] d...... 14333.737030: sched_switch:
prev_comm=swapper/1 prev_pid=0 prev_prio=120 prev_state=R ==>
next_comm=watchdog/1 next_pid=12 next_prio=0
 <idle>-0 [000] d...... 14333.738023: sched_switch:
prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==>
next_comm=watchdog/0 next_pid=11 next_prio=0
 <idle>-0 [002] d...... 14333.751985: sched_switch:
prev_comm=swapper/2 prev_pid=0 prev_prio=120 prev_state=R ==>
next_comm=watchdog/2 next_pid=17 next_prio=0
 <idle>-0 [003] d...... 14333.765947: sched_switch:
prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==>

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

54

next_comm=watchdog/3 next_pid=22 next_prio=0
 <idle>-0 [004] d...... 14333.779933: sched_switch:
prev_comm=swapper/4 prev_pid=0 prev_prio=120 prev_state=R ==>
next_comm=watchdog/4 next_pid=27 next_prio=0
 <idle>-0 [005] d...... 14333.794114: sched_switch:
prev_comm=swapper/5 prev_pid=0 prev_prio=120 prev_state=R ==>
next_comm=watchdog/5 next_pid=32 next_prio=0

Task priorities

This is a good time to explain task priorities, as the tracer reports
them
differently than the way user processes see priorities. A task has
priority
policies that are SCHED_OTHER, SCHED_FIFO and SCHED_RR. By default
tasks are assigned SCHED_OTHER which runs under the kernels Completely
Fail Scheduler (CFS), where as SCHED_FIFO and SCHED_RR runs under
the real-time scheduler. The real-time scheduler has 99 different
priorities
ranging from 1 - 99, where 99 is the highest priority and 1 is the
lowest.
This is set by sched_setscheduler(2).

If you noticed above, to show real time tasks, the filter used
"next_prio < 100". Ftrace reports the internal kernel version of
priorities
for tasks and not the priority that a task sees. This can be a little
confusing. For user real-time priorities of 1 through 99 are mapped
internally as 98 to 0, where 0 is the highest priority and 98 is the
lowest
of the real time priorities. All non real-time tasks show a priority of
120,
as CFS does not use the priority to determine which tasks to run,
although
it does use a nice value, but that's not represented by the prio field
reported in the traces.

Tracers

Depending on how the kernel was configured, not all tracers may be
available
for a given kernel.For the Red Hat Enterprise Linux for Real Time
kernels, the trace and debug kernels have
different tracers than the production kernel does. This is because some
of the tracers have a noticeable overhead when the tracer is configured
into the kernel but not active. Those tracers are only enabled for
the trace and debug kernels.

To see what tracers are available for the kernel, cat out the contents

Det ailed Descript ion of Ft race

55

of "available_tracers":

># cat available_tracers
function_graph wakeup_rt wakeup preemptirqsoff preemptoff irqsoff function
nop

The "nop" tracer has already been discussed and is available in all
kernels.

The "function" tracer

The most popular tracer aside from the "nop" tracer is the "function"
tracer. This tracer traces the function calls within the kernel.
Depending on how many functions are tracer or which specific functions,
it can cause a very noticeable overhead when tracing is active.

Note, due to a clever trick with code modification, the function tracer
induces very little overhead when not active. This is because the
hooks in the function calls to be traced are converted into nops on
boot, and are only converted back to hooks into the tracer when
activated.

># echo function > current_tracer
># cat trace
tracer: function
#
entries-in-buffer/entries-written: 319338/253106705 #P:8
#
_-------=> irqs-off
/ _------=> need-resched
|/ _-----=> need-resched_lazy
||/ _----=> hardirq/softirq
|||/ _---=> preempt-depth
||||/ _--=> preempt-lazy-depth
||||| / _-=> migrate-disable
|||||| / delay
TASK-PID CPU# ||||||| TIMESTAMP FUNCTION
| | | ||||||| | |
 kworker/5:1-58 [005] 32462.200700:
smp_call_function_single <-cpufreq_get_measured_perf
 kworker/5:1-58 [005] d...... 32462.200700:
read_measured_perf_ctrs <-smp_call_function_single
 kworker/5:1-58 [005] 32462.200701: cpufreq_cpu_put <-
__cpufreq_driver_getavg
 kworker/5:1-58 [005] 32462.200702: module_put <-
cpufreq_cpu_put
 kworker/5:1-58 [005] 32462.200702: od_check_cpu <-
dbs_check_cpu
 kworker/5:1-58 [005] 32462.200702: usecs_to_jiffies <-
od_dbs_timer
 kworker/5:1-58 [005] 32462.200703:
schedule_delayed_work_on <-od_dbs_timer
 kworker/5:1-58 [005] 32462.200703: queue_delayed_work_on

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

56

<-schedule_delayed_work_on
 kworker/5:1-58 [005] d...... 32462.200704: __queue_delayed_work
<-queue_delayed_work_on
 kworker/5:1-58 [005] d...... 32462.200704: get_work_gcwq <-
__queue_delayed_work
 kworker/5:1-58 [005] d...... 32462.200704: get_cwq <-
__queue_delayed_work
 kworker/5:1-58 [005] d...... 32462.200705: add_timer_on <-
__queue_delayed_work
 kworker/5:1-58 [005] d...... 32462.200705: _raw_spin_lock_irqsave
<-add_timer_on
 kworker/5:1-58 [005] d...... 32462.200705: internal_add_timer <-
add_timer_on

Filtering on functions

As tracing all functions can be induce a substantial overhead, as well
as adding a lot of noise to the trace (you may not be interested in every
function call), ftrace provides a way to limit what functions can be
traced. There are two files for this purpose:

 set_ftrace_filter

 set_ftrace_notrace

For a list of functions that can be traced, as well as added to these
files:

 available_filter_functions

By writing a name of a function into the "set_ftrace_filter" file, the
function tracer will only trace that function.

># echo schedule_delayed_work > set_ftrace_filter
># cat set_ftrace_filter
schedule_delayed_work
># cat trace
tracer: function
#
entries-in-buffer/entries-written: 8/8 #P:8
#
_-------=> irqs-off
/ _------=> need-resched
|/ _-----=> need-resched_lazy
||/ _----=> hardirq/softirq
|||/ _---=> preempt-depth
||||/ _--=> preempt-lazy-depth
||||| / _-=> migrate-disable
|||||| / delay
TASK-PID CPU# ||||||| TIMESTAMP FUNCTION
| | | ||||||| | |
 kworker/0:2-1586 [000] 32820.361913: schedule_delayed_work

Det ailed Descript ion of Ft race

57

<-vmstat_update
 kworker/2:1-62 [002] 32820.370891: schedule_delayed_work
<-vmstat_update
 kworker/3:2-5004 [003] 32820.373881: schedule_delayed_work
<-vmstat_update
 kworker/0:2-1586 [000] 32820.448658: schedule_delayed_work
<-do_cache_clean
 kworker/4:1-61 [004] 32820.537541: schedule_delayed_work
<-vmstat_update
 kworker/4:1-61 [004] 32820.537546: schedule_delayed_work
<-sync_cmos_clock
 kworker/7:1-121 [007] 32820.897372: schedule_delayed_work
<-vmstat_update
 kworker/1:1-57 [001] 32820.898361: schedule_delayed_work
<-vmstat_update

Note, modifications to these files follows shell concatenation rules:

># cat set_ftrace_filter
schedule_delayed_work
># echo do_IRQ > set_ftrace_filter
># cat set_ftrace_filter
do_IRQ

Notice that writing with '>' into set_ftrace_filter cleared what was
currently in the file and replaced it with the new contents. Just
writing into the file will clear it:

># cat set_ftrace_filter
do_IRQ
># echo > set_ftrace_filter
># cat set_ftrace_filter
all functions enabled

To append to the list, use the shell append operation '>>':

># cat set_ftrace_filter
do_IRQ
># echo schedule_delayed_work >> set_ftrace_filter
># cat set_ftrace_filter
schedule_delayed_work
do_IRQ

Note, the order of functions displayed has nothing to do with how they
were added. Their order is dependent upon how the functions are layed
out in the kernel internal function list table.

Globs

Functions can be added to these files with the same type of glob
expressions described in the event filtering section. The format is
identical:

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

58

 <glob> = VALUE | '*' VALUE | VALUE '*' | '*' VALUE '*'

If you want to trace all functions that start with "sched":

># echo 'sched*' > set_ftrace_filter
># cat set_ftrace_filter
schedule_delayed_work_on
schedule_delayed_work
schedule_work_on
schedule_work
schedule_on_each_cpu
sched_feat_open
sched_feat_show
[...]
># echo function > current_tracer
># cat trace
tracer: function
#
entries-in-buffer/entries-written: 1270/1270 #P:8
#
_-------=> irqs-off
/ _------=> need-resched
|/ _-----=> need-resched_lazy
||/ _----=> hardirq/softirq
|||/ _---=> preempt-depth
||||/ _--=> preempt-lazy-depth
||||| / _-=> migrate-disable
|||||| / delay
TASK-PID CPU# ||||||| TIMESTAMP FUNCTION
| | | ||||||| | |
 bash-1367 [001] 34240.654888: schedule_work <-
tty_flip_buffer_push
 bash-1367 [001] .N..... 34240.654902: schedule <-
sysret_careful
 kworker/1:1-57 [001] 34240.654921: schedule <-
worker_thread
 <idle>-0 [000] .N..... 34240.654949: schedule <-cpu_idle
 bash-1367 [001] 34240.655069: schedule_work <-
tty_flip_buffer_push
 bash-1367 [001] .N..... 34240.655079: schedule <-
sysret_careful
 sshd-1365 [000] 34240.655087: schedule_timeout <-
wait_for_common
 sshd-1365 [000] 34240.655088: schedule <-
schedule_timeout

set_ftrace_notrace

There are cases were you may want to trace everything except for various
functions that you don't care about. Perhaps there's functions that cause
too much noise in the trace, for example, perhaps locks are showing

Det ailed Descript ion of Ft race

59

up in the trace and you don't care about them:

># echo '*lock*' > set_ftrace_notrace
># cat set_ftrace_notrace
update_persistent_clock
read_persistent_clock
set_task_blockstep
user_enable_block_step
read_hv_clock
__acpi_acquire_global_lock
__acpi_release_global_lock
cpu_hotplug_driver_lock
cpu_hotplug_driver_unlock
[...]

But notice that you also included functions that have "clock" and "block"
in their names. To remove them but still keep the "lock" functions, use
the '!' symbol:

># echo '!*clock*' >> set_ftrace_notrace
># echo '!*block*' >> set_ftrace_notrace
># cat set_ftrace_notrace
__acpi_acquire_global_lock
__acpi_release_global_lock
cpu_hotplug_driver_lock
cpu_hotplug_driver_unlock
lock_vector_lock
unlock_vector_lock
console_lock
console_trylock
console_unlock
is_console_locked
kmsg_dump_get_line_nolock
[...]

But remember to use '>>' instead of '>', as that will clear out all
functions in the file.

Latency tracers

As stated, the difference between events and tracers, is that events
just enable recording some specific information within the kernel.
Traces have a bit more impact. Function tracing, in essence, also
just records information, but it requires a bit more work than enabling
a static tracepoint (event). Also, to limit what function tracing can
trace, requires writing into control files for the function tracer.

Another type of tracer is the latency tracers. These record a snapshot
of the trace when the latency is greater than the previously recorded
latency. There are two types of latency tracers, one kind records the
length of time when activities within the kernel are disabled, and the
other records the time it takes from when a task is woken from sleep

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

60

to the time it gets scheduled.

tracing_max_latency

A latency tracer will just keep track of a snapshot of a trace when a new
max latency is hit. To see the current max latency time, cat the
contents
of the file "tracing_max_latency". This file can also be used to set
the max time. Either to reset it back to zero or some lesser number to
trigger new snapshots of latencies, or to set it to a greater number to
not record anything unless a latency has exceeded some given time.

The unit of time that "tracing_max_latency" uses (as well as all other
tracing files, unless otherwise specified) is microseconds.

irqsoff tracer

A common use of the tracing facility is to see how long interrupts have
been disabled for. When interrupts are disabled, the system cannot
respond to external events, which can include a packet coming in on the
network card, or perhaps a task on another CPU woke up a task on the
current
CPU and sent an interprocessor interrupt (IPI) to tell the current CPU
to run the new task. With interrupts disabled, the current CPU will
ignore all external events, which is a source of latencies. This is why
monitorying how long interrupts are disabled can show why the system
did not react in a proper time that was expected.

The irqsoff tracer traces the time interrupts are disabled to the time
they are enabled again. If the time interrupts were disabled is larger
than the time specified by "tracing_max_latency" has, then it will
save the current trace off to a "snapshot" buffer, reset the current
buffer and continue tracing looking for the next time interrupts
are off for a long time.

Here's an example of how to use irqsoff tracer:

># echo 0 > tracing_max_latency
># echo irqsoff > current_tracer
># sleep 10
># cat trace
tracer: irqsoff
#
irqsoff latency trace v1.1.5 on 3.8.13-test-mrg-rt9+
--
latency: 523 us, #1301/1301, CPU#2 | (Mreempt VP:0, KP:0, SP:0 HP:0
#P:8)

| task: swapper/2-0 (uid:0 nice:0 policy:0 rt_prio:0)

=> started at: cpu_idle
=> ended at: cpu_idle
#

Det ailed Descript ion of Ft race

61

#
_--------=> CPU#
/ _-------=> irqs-off
| / _------=> need-resched
|| / _-----=> need-resched_lazy
||| / _----=> hardirq/softirq
|||| / _---=> preempt-depth
||||| / _--=> preempt-lazy-depth
|||||| / _-=> migrate-disable
||||||| / delay
cmd pid |||||||| time | caller
\ / |||||||| \ | /
 <idle>-0 2dN..1.. 0us : tick_nohz_idle_exit <-cpu_idle
 <idle>-0 2dN..1.. 1us : menu_hrtimer_cancel <-
tick_nohz_idle_exit
 <idle>-0 2dN..1.. 1us : ktime_get <-tick_nohz_idle_exit
 <idle>-0 2dN..1.. 1us : tick_do_update_jiffies64 <-
tick_nohz_idle_exit
 <idle>-0 2dN..1.. 2us : update_cpu_load_nohz <-
tick_nohz_idle_exit
 <idle>-0 2dN..1.. 2us : _raw_spin_lock <-update_cpu_load_nohz
 <idle>-0 2dN..1.. 3us : add_preempt_count <-_raw_spin_lock
 <idle>-0 2dN..2.. 3us : __update_cpu_load <-
update_cpu_load_nohz
 <idle>-0 2dN..2.. 4us : sub_preempt_count <-
update_cpu_load_nohz
 <idle>-0 2dN..1.. 4us : calc_load_exit_idle <-
tick_nohz_idle_exit
 <idle>-0 2dN..1.. 5us : touch_softlockup_watchdog <-
tick_nohz_idle_exit
 <idle>-0 2dN..1.. 5us : hrtimer_cancel <-tick_nohz_idle_exit

[...]

 <idle>-0 2dN..1.. 521us : account_idle_time <-
irqtime_account_process_tick.isra.2
 <idle>-0 2dN..1.. 521us : irqtime_account_process_tick.isra.2 <-
account_idle_ticks
 <idle>-0 2dN..1.. 521us : nsecs_to_jiffies64 <-
irqtime_account_process_tick.isra.2
 <idle>-0 2dN..1.. 522us : nsecs_to_jiffies64 <-
irqtime_account_process_tick.isra.2
 <idle>-0 2dN..1.. 522us : account_idle_time <-
irqtime_account_process_tick.isra.2
 <idle>-0 2dN..1.. 522us : irqtime_account_process_tick.isra.2 <-
account_idle_ticks
 <idle>-0 2dN..1.. 522us : nsecs_to_jiffies64 <-
irqtime_account_process_tick.isra.2
 <idle>-0 2dN..1.. 523us : nsecs_to_jiffies64 <-
irqtime_account_process_tick.isra.2
 <idle>-0 2dN..1.. 523us : account_idle_time <-
irqtime_account_process_tick.isra.2
 <idle>-0 2dN..1.. 523us : tick_nohz_idle_exit <-cpu_idle
 <idle>-0 2dN..1.. 524us+: trace_hardirqs_on <-cpu_idle
 <idle>-0 2dN..1.. 537us : <stack trace>
 => tick_nohz_idle_exit

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

62

 => cpu_idle
 => start_secondary

By default, the irqsoff tracer enables function tracing to show what
functions
are being called while interrupts were disabled. But as you can see, it
can produce a lot of output (the total line count of the above trace
was 1,327 lines. Most of that was cut to not waste space in this
document).
The problem with the function tracer is that it incurs a substantial
overhead
and exagerates the actual latency.

The reported latency above is 523 microseconds. The trace ends at 537
microseconds, but that's because it took 14 microseconds to produce the
stack trace.

The end of the trace does a stack dump to show where the latency
occurred.
The above happened in tick_nohz_idle_exit(), and even though we can
blame
the function tracer for exagerating the latency, this trace shows
that using NO HZ idle can have issues with a real time system. When a
system with NO HZ set is idle, the timer tick is stopped. When the system
resumes from idle, the timer must catch up to the current time and
executes
all the ticks it missed in the loop. This is done with interrupts
disabled.

Looking at the latency field "2dN..1.." you can see that this loop
ran on CPU 2, had interrupts disabled "d". The scheduler needed to run
"N" (for NEED_RESCHED). Preemption was disabled, as the preempt_count
counter was set to "1".

Ideally, when coming out of NO HZ, the accounting could be done in a
single
step, but as that is tricky to get right, the current method is to just
run the current code in a loop as if the timer went off each time.

No function tracing

As function tracing can exaggerate the latency, you can either
limit what functions are traced via the "set_ftrace_filter" and
"set_ftrace_notrace" files as described above in the function tracing
section. But you can also disable tracing totally via the tracing
option function-trace.

># echo 0 > /sys/kernel/debug/tracing/options/function-trace

This disables function tracing by all the ftrace tracers. Including
the function tracer, which would make it rather pointless because

Det ailed Descript ion of Ft race

63

the function tracer would act just like the "nop" tracer.

># echo 0 > options/function-trace
># echo 0 > tracing_max_latency
># echo irqsoff > current_tracer
># sleep 10
># cat trace
tracer: irqsoff
#
irqsoff latency trace v1.1.5 on 3.8.13-test-mrg-rt9+
--
latency: 80 us, #4/4, CPU#6 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:8)

| task: swapper/6-0 (uid:0 nice:0 policy:0 rt_prio:0)

=> started at: cpu_idle
=> ended at: cpu_idle
#
#
_--------=> CPU#
/ _-------=> irqs-off
| / _------=> need-resched
|| / _-----=> need-resched_lazy
||| / _----=> hardirq/softirq
|||| / _---=> preempt-depth
||||| / _--=> preempt-lazy-depth
|||||| / _-=> migrate-disable
||||||| / delay
cmd pid |||||||| time | caller
\ / |||||||| \ | /
 <idle>-0 6dN..1.. 0us+: tick_nohz_idle_exit <-cpu_idle
 <idle>-0 6dN..1.. 81us : tick_nohz_idle_exit <-cpu_idle
 <idle>-0 6dN..1.. 81us+: trace_hardirqs_on <-cpu_idle
 <idle>-0 6dN..1.. 87us : <stack trace>
 => tick_nohz_idle_exit
 => cpu_idle
 => start_secondary

This time the latency is much more compact and accurate (80 microseconds
is still a lot, but much lower than 523). Here the backtrace is much more
important as its now the only real information to know where the latency
occurred.

preemptoff tracer

There are points in the kernel that disables preemption but not
interrupts.
That is, an interrupt can still interrupt the current process but that
process cannot be scheduled out for a higher priority process.

This tracer records the time that preemption is disabed via the
kernel internal "preempt_disable()" function.

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

64

># echo 0 > /sys/kernel/debug/tracing/options/function-trace
># echo 0 > tracing_max_latency
># echo preemptoff > current_tracer
># sleep 10
># cat trace
tracer: preemptoff
#
preemptoff latency trace v1.1.5 on 3.8.13-test-mrg-rt9+
--
latency: 65 us, #4/4, CPU#6 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:8)

| task: swapper/6-0 (uid:0 nice:0 policy:0 rt_prio:0)

=> started at: cpuidle_enter
=> ended at: start_secondary
#
#
_--------=> CPU#
/ _-------=> irqs-off
| / _------=> need-resched
|| / _-----=> need-resched_lazy
||| / _----=> hardirq/softirq
|||| / _---=> preempt-depth
||||| / _--=> preempt-lazy-depth
|||||| / _-=> migrate-disable
||||||| / delay
cmd pid |||||||| time | caller
\ / |||||||| \ | /
 <idle>-0 6d...1.. 1us+: intel_idle <-cpuidle_enter
 <idle>-0 6.N..1.. 65us : cpu_idle <-start_secondary
 <idle>-0 6.N..1.. 66us+: trace_preempt_on <-start_secondary
 <idle>-0 6.N..1.. 71us : <stack trace>
 => sub_preempt_count
 => cpu_idle
 => start_secondary

There's not much interesting in this trace except that preemption was
disabled for 65 microseconds.

preemptirqsoff tracer

Knowing when interrupts are disabled or how long preemption is disabled
via the preempt_disable() kernel interface is not as interesting as
knowing how long true preemption is disabled. That is, if we have the
following scenario:

A) preempt_disable()

[...]

B) irqs_disable()

[...]

Det ailed Descript ion of Ft race

65

C) preempt_enable();

[...]

D) irqs_enable();

"irqsoff" tracer will give you the time from B to D
"preemptoff" tracer will give you the time from A to C.

But the current task cannot be preempted from A to D which is what we
really care about. When a task cannot be preempted, a new task can
no execute when it is woken up if it is to run on the same CPU as the
task that has true preemption disabled (either interrupts disabled or
preemption disabled). The "preemptirqsoff" tracer will handle this.

"preemptirqsoff" tracer will give you the time from A to D

># echo 1 > /sys/kernel/debug/tracing/options/function-trace
># echo 0 > tracing_max_latency
># echo preemptirqsoff > current_tracer
># sleep 10
># cat trace
tracer: preemptirqsoff
#
preemptirqsoff latency trace v1.1.5 on 3.8.13-test-mrg-rt9+
--
latency: 377 us, #1289/1289, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0
#P:8)

| task: swapper/1-0 (uid:0 nice:0 policy:0 rt_prio:0)

=> started at: cpuidle_enter
=> ended at: start_secondary
#
#
_--------=> CPU#
/ _-------=> irqs-off
| / _------=> need-resched
|| / _-----=> need-resched_lazy
||| / _----=> hardirq/softirq
|||| / _---=> preempt-depth
||||| / _--=> preempt-lazy-depth
|||||| / _-=> migrate-disable
||||||| / delay
cmd pid |||||||| time | caller
\ / |||||||| \ | /
 <idle>-0 1d...1.. 0us : intel_idle <-cpuidle_enter
 <idle>-0 1d...1.. 1us : ktime_get <-cpuidle_wrap_enter
 <idle>-0 1d...1.. 2us : smp_reschedule_interrupt <-
reschedule_interrupt
 <idle>-0 1d...1.. 3us : scheduler_ipi <-
smp_reschedule_interrupt
 <idle>-0 1d...1.. 3us : irq_enter <-scheduler_ipi

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

66

 <idle>-0 1d...1.. 4us : rcu_irq_enter <-irq_enter
 <idle>-0 1d...1.. 4us : rcu_eqs_exit_common.isra.45 <-
rcu_irq_enter
 <idle>-0 1d...1.. 5us : tick_check_idle <-irq_enter
 <idle>-0 1d...1.. 5us : tick_check_oneshot_broadcast <-
tick_check_idle
 <idle>-0 1d...1.. 5us : ktime_get <-tick_check_idle
 <idle>-0 1d...1.. 6us : tick_nohz_stop_idle <-tick_check_idle
 <idle>-0 1d...1.. 6us : update_ts_time_stats <-
tick_nohz_stop_idle
 <idle>-0 1d...1.. 7us : nr_iowait_cpu <-update_ts_time_stats
 <idle>-0 1d...1.. 7us : touch_softlockup_watchdog <-
sched_clock_idle_wakeup_event
 <idle>-0 1d...1.. 7us : tick_do_update_jiffies64 <-
tick_check_idle
 <idle>-0 1d...1.. 8us : touch_softlockup_watchdog <-
tick_check_idle
 <idle>-0 1d...1.. 8us : irqtime_account_irq <-irq_enter
 <idle>-0 1d...1.. 9us : in_serving_softirq <-
irqtime_account_irq
 <idle>-0 1d...1.. 9us : add_preempt_count <-irq_enter
 <idle>-0 1d..h1.. 9us : sched_ttwu_pending <-scheduler_ipi
 <idle>-0 1d..h1.. 10us : _raw_spin_lock <-sched_ttwu_pending
 <idle>-0 1d..h1.. 10us : add_preempt_count <-_raw_spin_lock
 <idle>-0 1d..h2.. 11us : sub_preempt_count <-sched_ttwu_pending
 <idle>-0 1d..h1.. 11us : raise_softirq_irqoff <-scheduler_ipi
 <idle>-0 1d..h1.. 12us : do_raise_softirq_irqoff <-
raise_softirq_irqoff
 <idle>-0 1d..h1.. 12us : irq_exit <-scheduler_ipi
 <idle>-0 1d..h1.. 12us : irqtime_account_irq <-irq_exit
 <idle>-0 1d..h1.. 13us : sub_preempt_count <-irq_exit
 <idle>-0 1d...2.. 13us : wakeup_softirqd <-irq_exit
 <idle>-0 1d...2.. 14us : wake_up_process <-wakeup_softirqd
 <idle>-0 1d...2.. 14us : try_to_wake_up <-wake_up_process

[...]

 <idle>-0 1d...4.. 18us : dequeue_rt_stack <-enqueue_task_rt
 <idle>-0 1d...4.. 19us : cpupri_set <-enqueue_task_rt
 <idle>-0 1d...4.. 20us : update_rt_migration <-enqueue_task_rt
 <idle>-0 1d...4.. 20us : ttwu_do_wakeup <-
ttwu_do_activate.constprop.90
 <idle>-0 1d...4.. 20us : check_preempt_curr <-ttwu_do_wakeup
 <idle>-0 1d...4.. 21us : resched_task <-check_preempt_curr
 <idle>-0 1dN..4.. 21us : task_woken_rt <-ttwu_do_wakeup
 <idle>-0 1dN..4.. 22us : sub_preempt_count <-try_to_wake_up
 <idle>-0 1dN..3.. 22us : ttwu_stat <-try_to_wake_up
 <idle>-0 1dN..3.. 23us : _raw_spin_unlock_irqrestore <-
try_to_wake_up
 <idle>-0 1dN..3.. 23us : sub_preempt_count <-
_raw_spin_unlock_irqrestore

[...]

 <idle>-0 1dN..1.. 376us : nsecs_to_jiffies64 <-
irqtime_account_process_tick.isra.2

Det ailed Descript ion of Ft race

67

 <idle>-0 1dN..1.. 376us : nsecs_to_jiffies64 <-
irqtime_account_process_tick.isra.2
 <idle>-0 1dN..1.. 376us : account_idle_time <-
irqtime_account_process_tick.isra.2
 <idle>-0 1dN..1.. 377us : irqtime_account_process_tick.isra.2 <-
account_idle_ticks
 <idle>-0 1dN..1.. 377us : nsecs_to_jiffies64 <-
irqtime_account_process_tick.isra.2
 <idle>-0 1dN..1.. 377us : nsecs_to_jiffies64 <-
irqtime_account_process_tick.isra.2
 <idle>-0 1dN..1.. 377us : account_idle_time <-
irqtime_account_process_tick.isra.2
 <idle>-0 1.N..1.. 378us : cpu_idle <-start_secondary
 <idle>-0 1.N..1.. 378us+: trace_preempt_on <-start_secondary
 <idle>-0 1.N..1.. 391us : <stack trace>
 => sub_preempt_count
 => cpu_idle
 => start_secondary

The above is a much more interesting trace. Although we enabled function
tracing again, it allows us to see more of what is happening during
the trace.

The trace starts out at intel_idle() which on the box the trace was run
on
is the idle function. Idle function usually disable preemption and
sometimes interrupts when the system is put to sleep, although an
interrupt will wake up the processor, the interrupt will not be serviced
until the processor re-enables interrupts again.

As interrupts and preemption is disabled across a full idle, the tracer
must account for this, as it is pretty useless to trace how long the
CPU has been idle. Thus, immediately exiting the idle state, the
latency tracers are re-enabled. This is where the start of the trace
occurred.

Then we can see that an interrupt is triggered after interrupts were
enabled (schedule_ipi). An interprocessor interrupt happened to wake up
a process that is on the current CPU.

Next the irq_enter() is called. This tells the system (including the
tracing system) that the kernel is now int interrupt mode. Notice that
'h' is not set until after "add_preempt_count" is called. That's because
the irq accounting is shared with the preempt_count code. A lot has
happened
before that got set, as NO HZ and RCU must perform activities immediately
when coming out of idle via an interrupt.

A softirq was raised while in the interrupt and as the Red Hat
Enterprise Linux for Real Time kernel runs
soft interrupts as threads, the corresponding softirq was woken up
on exiting the interrupt (irq_exit).

This wakeup also triggered the NEED_RESCHED flag "N" to be set, to let
the system know that the kernel needs to call schedule as soon as
preemption is re-enabled.

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

68

Finally the NO HZ accounting ran again with interrupts and preemption
disabled. Finally, interrupts were enabled and so was the preemption.

wakeup tracer

The previous tracers ("irqsoff", "preemptoff", and "preemptirqsoff")
were single CPU tracers. That is, they only reported the activities
on a single CPU, as interrupts only occurred there.

Both "wakeup" and "wakeup_rt" tracers are full CPU tracers. That is,
they report the activities of what happens across all CPUs. This is
because a task may be woken from one CPU but get scheduled on another
CPU.

The "wakeup" tracer is not that interresting from a real-time
perspective,
as it records the time it takes to wake up the highest priority task
in the system even if that task does not happen to be a real time task.
Non real-time tasks may be delayed due scheduling balacing, and not
immediately scheduled for throughput reasons. Real-time tasks are
scheduled
immediately after they are woken. Recording the max time it takes to
wake up a non real-time task will hide the times it takes to wake up
a real-time task. Because of this, we will focus on the "wakeup_rt"
tracer
instead.

wakeup_rt tracer

The "wakeup" tracer records the time it takes from the current highest
priority task to wake up to the time it is scheduled. Because non real-
time
tasks may take much longer to wake up than a real-time task, and that
the latency tracers only record the longest time, "wakeup" tracer is not
that suitable for seeing how long a real-time task takes to be scheduled
from the time it is woken. For that, we use the "wakeup_rt" tracer.

The "wakeup_rt" tracer only records the time for real-time tasks and
ignores the time for non real-time tasks.

># echo 0 > tracing_max_latency
># echo preemptirqsoff > current_tracer
># sleep 10
># cat trace
tracer: wakeup_rt
#
wakeup_rt latency trace v1.1.5 on 3.8.13-test-mrg-rt9+
--
latency: 385 us, #1339/1339, CPU#7 | (M:preempt VP:0, KP:0, SP:0 HP:0
#P:8)

Det ailed Descript ion of Ft race

69

| task: ksoftirqd/7-51 (uid:0 nice:0 policy:1 rt_prio:1)

#
_--------=> CPU#
/ _-------=> irqs-off
| / _------=> need-resched
|| / _-----=> need-resched_lazy
||| / _----=> hardirq/softirq
|||| / _---=> preempt-depth
||||| / _--=> preempt-lazy-depth
|||||| / _-=> migrate-disable
||||||| / delay
cmd pid |||||||| time | caller
\ / |||||||| \ | /
 <idle>-0 7d...5.. 0us : 0:120:R + [007] 51: 98:R
ksoftirqd/7
 <idle>-0 7d...5.. 2us : ttwu_do_activate.constprop.90 <-
try_to_wake_up
 <idle>-0 7d...4.. 2us : check_preempt_curr <-ttwu_do_wakeup
 <idle>-0 7d...4.. 3us : resched_task <-check_preempt_curr
 <idle>-0 7dN..4.. 3us : task_woken_rt <-ttwu_do_wakeup
 <idle>-0 7dN..4.. 4us : sub_preempt_count <-try_to_wake_up
 <idle>-0 7dN..3.. 4us : ttwu_stat <-try_to_wake_up
 <idle>-0 7dN..3.. 4us : _raw_spin_unlock_irqrestore <-
try_to_wake_up
 <idle>-0 7dN..3.. 5us : sub_preempt_count <-
_raw_spin_unlock_irqrestore
 <idle>-0 7dN..2.. 5us : idle_cpu <-irq_exit
 <idle>-0 7dN..2.. 5us : rcu_irq_exit <-irq_exit
 <idle>-0 7dN..2.. 6us : rcu_eqs_enter_common.isra.47 <-
rcu_irq_exit

[...]

 <idle>-0 7dN..1.. 53us : nsecs_to_jiffies64 <-
irqtime_account_process_tick.isra.2
 <idle>-0 7dN..1.. 53us : nsecs_to_jiffies64 <-
irqtime_account_process_tick.isra.2
 <idle>-0 7dN..1.. 54us : account_idle_time <-
irqtime_account_process_tick.isra.2
 <idle>-0 7dN..1.. 54us : irqtime_account_process_tick.isra.2 <-
account_idle_ticks
 <idle>-0 7dN..1.. 54us : nsecs_to_jiffies64 <-
irqtime_account_process_tick.isra.2
 <idle>-0 7dN..1.. 54us : nsecs_to_jiffies64 <-
irqtime_account_process_tick.isra.2
 <idle>-0 7dN..1.. 55us : account_idle_time <-
irqtime_account_process_tick.isra.2
 <idle>-0 7dN..1.. 55us : irqtime_account_process_tick.isra.2 <-
account_idle_ticks
 <idle>-0 7dN..1.. 55us : nsecs_to_jiffies64 <-
irqtime_account_process_tick.isra.2
 <idle>-0 7dN..1.. 55us : nsecs_to_jiffies64 <-
irqtime_account_process_tick.isra.2
 <idle>-0 7dN..1.. 56us : account_idle_time <-

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

70

irqtime_account_process_tick.isra.2
 <idle>-0 7dN..1.. 56us : irqtime_account_process_tick.isra.2 <-
account_idle_ticks
 <idle>-0 7dN..1.. 56us : nsecs_to_jiffies64 <-
irqtime_account_process_tick.isra.2
 <idle>-0 7dN..1.. 56us : nsecs_to_jiffies64 <-
irqtime_account_process_tick.isra.2
 <idle>-0 7dN..1.. 57us : account_idle_time <-
irqtime_account_process_tick.isra.2
 <idle>-0 7dN..1.. 57us : irqtime_account_process_tick.isra.2 <-
account_idle_ticks

[...]

 <idle>-0 7dN.h1.. 377us : tick_program_event <-hrtimer_interrupt
 <idle>-0 7dN.h1.. 378us : clockevents_program_event <-
tick_program_event
 <idle>-0 7dN.h1.. 378us : ktime_get <-clockevents_program_event
 <idle>-0 7dN.h1.. 378us : lapic_next_deadline <-
clockevents_program_event
 <idle>-0 7dN.h1.. 379us : irq_exit <-smp_apic_timer_interrupt
 <idle>-0 7dN.h1.. 379us : irqtime_account_irq <-irq_exit
 <idle>-0 7dN.h1.. 379us : sub_preempt_count <-irq_exit
 <idle>-0 7dN..2.. 379us : wakeup_softirqd <-irq_exit
 <idle>-0 7dN..2.. 380us : idle_cpu <-irq_exit
 <idle>-0 7dN..2.. 380us : rcu_irq_exit <-irq_exit
 <idle>-0 7dN..2.. 380us : sub_preempt_count <-irq_exit
 <idle>-0 7.N..1.. 381us : sub_preempt_count <-cpu_idle
 <idle>-0 7.N..... 381us : __schedule <-preempt_schedule
 <idle>-0 7.N..... 382us : add_preempt_count <-__schedule
 <idle>-0 7.N..1.. 382us : rcu_note_context_switch <-__schedule
 <idle>-0 7.N..1.. 382us : _raw_spin_lock_irq <-__schedule
 <idle>-0 7dN..1.. 382us : add_preempt_count <-_raw_spin_lock_irq
 <idle>-0 7dN..2.. 383us : update_rq_clock <-__schedule
 <idle>-0 7dN..2.. 383us : put_prev_task_idle <-__schedule
 <idle>-0 7dN..2.. 383us : pick_next_task_stop <-__schedule
 <idle>-0 7dN..2.. 384us : pick_next_task_rt <-__schedule
 <idle>-0 7dN..2.. 384us : dequeue_pushable_task <-
pick_next_task_rt
 <idle>-0 7d...3.. 385us : __schedule <-preempt_schedule
 <idle>-0 7d...3.. 385us : 0:120:R ==> [007] 51: 98:R
ksoftirqd/7

And once again we can see that NO HZ affects the wake up time of a
real time task (this case it was ksoftirqd).

Notice the first traced item:

 0:120:R + [007] 51: 98:R ksoftirqd/7

This is in the format of:

 <pid>:<prio>:<process-state> + [<CPU#>] <pid>:<prio>:<process-
state>

Det ailed Descript ion of Ft race

71

The first pid, prio and process-state is for the task performing the
wake up. Again, the prio is the internal kernel prio, where 120 is for
SCHED_OTHER. The "+" represents a wake up is happening. The CPU# the
CPU waking task in currently assigned to (and being woken up on).
The second set of pid, prio and process-state is for the task being
woken up. The prio of 98 is internal to the kernel, and to get the real
real-time priority for the task you must subtract it from 99.
(99 - 98 = real-time priority of 1 - low priority)

The process-state should be always in the "R" (running) state, and
can be ignored. The original location to record the trace when waking
up was before the task was actually woken. Due to changes in the wake
up code, the trace hook had to be moved to after the wake up, which
means the task being woken up will have already been set to running
and the trace will reflect that.

The last line of the trace:

 0:120:R ==> [007] 51: 98:R ksoftirqd/7

Represents the scheduling of a task.

 <pid>:<prio>:<process-state> ==> [CPU#] <pid>:<prio><process-state>

The first set of pid, prio and process-state belongs to the task that
is being scheduled out. The second set is for the task that is being
scheduled in. The "==>" represents a task scheduling switch, and the
CPU# should always match the current CPU that is on (7 in this case).

The first process-state here is of more importance than that of the
wake up trace. If the previous task is in the running state (as it is
in this case), that means it has been preempted (still wants to run
but must yield for the new task).

Using events in tracers

With the "wakeup_rt" tracer, as with all tracers, function tracing can
exaggerate the latency times. But disabling the function tracing for
"wakeup_rt" is not very useful.

># echo 0 > /sys/kernel/debug/tracing/options/function-trace
># echo 0 > tracing_max_latency
># echo wakeup_rt > current_tracer
># sleep 10
># cat trace
tracer: wakeup_rt
#
wakeup_rt latency trace v1.1.5 on 3.8.13-test-mrg-rt9+
--
latency: 64 us, #18446744073709512109/18446744073709512109, CPU#5 |
(M:preempt VP:0, KP:0, SP:0 HP:0 #P:8)

| task: irq/43-em1-878 (uid:0 nice:0 policy:1 rt_prio:50)

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

72

#
_--------=> CPU#
/ _-------=> irqs-off
| / _------=> need-resched
|| / _-----=> need-resched_lazy
||| / _----=> hardirq/softirq
|||| / _---=> preempt-depth
||||| / _--=> preempt-lazy-depth
|||||| / _-=> migrate-disable
||||||| / delay
cmd pid |||||||| time | caller
\ / |||||||| \ | /
 <idle>-0 0d..h4.. 0us : 0:120:R + [005] 878: 49:R
irq/43-em1
 <idle>-0 0d..h4.. 2us+: ttwu_do_activate.constprop.90 <-
try_to_wake_up
 <idle>-0 5d...3.. 63us : __schedule <-preempt_schedule
 <idle>-0 5d...3.. 64us : 0:120:R ==> [005] 878: 49:R
irq/43-em1

The irq thread was woken up by a task on CPU 0, and it scheduled on
CPU 5.

As function tracing causes a large overhead, with the wakeup tracers, you
can still get information by using events, and events are sparse enough
to not cause much overhead even when enabled.

># echo 0 > /sys/kernel/debug/tracing/options/function-trace
># echo 1 > events/enable
># echo 0 > tracing_max_latency
># echo wakeup_rt > current_tracer
># sleep 10
># cat trace
tracer: wakeup_rt
#
wakeup_rt latency trace v1.1.5 on 3.8.13-test-mrg-rt9+
--
latency: 67 us, #15/15, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:8)

| task: irq/43-em1-878 (uid:0 nice:0 policy:1 rt_prio:50)

#
_--------=> CPU#
/ _-------=> irqs-off
| / _------=> need-resched
|| / _-----=> need-resched_lazy
||| / _----=> hardirq/softirq
|||| / _---=> preempt-depth
||||| / _--=> preempt-lazy-depth
|||||| / _-=> migrate-disable
||||||| / delay
cmd pid |||||||| time | caller
\ / |||||||| \ | /
 <idle>-0 0d..h4.. 0us : 0:120:R + [001] 878: 49:R

Det ailed Descript ion of Ft race

73

irq/43-em1
 <idle>-0 0d..h4.. 1us : ttwu_do_activate.constprop.90 <-
try_to_wake_up
 <idle>-0 0d..h4.. 1us+: sched_wakeup: comm=irq/43-em1 pid=878
prio=49 success=1 target_cpu=001
 <idle>-0 0....2.. 5us : power_end: cpu_id=0
 <idle>-0 0....2.. 6us+: cpu_idle: state=4294967295 cpu_id=0
 <idle>-0 0d...2.. 9us : power_start: type=1 state=3 cpu_id=0
 <idle>-0 0d...2.. 10us+: cpu_idle: state=3 cpu_id=0
 <idle>-0 1.N..2.. 25us+: power_end: cpu_id=1
 <idle>-0 1.N..2.. 27us+: cpu_idle: state=4294967295 cpu_id=1
 <idle>-0 1dN..3.. 30us : hrtimer_cancel:
hrtimer=ffff88011ea4cf40
 <idle>-0 1dN..3.. 31us+: hrtimer_start: hrtimer=ffff88011ea4cf40
function=tick_sched_timer expires=9670689000000 softexpires=9670689000000
 <idle>-0 1.N..2.. 64us : rcu_utilization: Start context switch
 <idle>-0 1.N..2.. 65us+: rcu_utilization: End context switch
 <idle>-0 1d...3.. 66us : __schedule <-preempt_schedule
 <idle>-0 1d...3.. 67us : 0:120:R ==> [001] 878: 49:R
irq/43-em1

The above trace is much more accurate to a real latency, but this time
we get a lot more information. The task being woken up in on CPU 1, and
the first time we see CPU 1 is at the 25 microsecond time. The
"power_end"
trace point shows that the CPU is coming out of a deep power state, which
explains why the time took so long. The high resolution timer has been
reinitialized, and we can assume from our other traces that the NO HZ
code is running again to catch up on the tick, although no trace points
currently represent that. This process took 33 microseconds, where we
see RCU handling a context switch, and eventually the schedule takes
place.

function_graph

The "function" tracer is extremely informative, albeit invasive, but
it is a bit difficult for a human to read.

 <idle>-0 [000]1.. 10698.878897: sub_preempt_count <-
__schedule
 less-3062 [006] 10698.878897: add_preempt_count <-
migrate_disable
 cat-3061 [007] d...... 10698.878897: add_preempt_count <-
_raw_spin_lock
 <idle>-0 [000] 10698.878897: add_preempt_count <-
cpu_idle
 less-3062 [006]11. 10698.878897: pin_current_cpu <-
migrate_disable
 <idle>-0 [000]1.. 10698.878898: tick_nohz_idle_enter
<-cpu_idle
 cat-3061 [007] d...1.. 10698.878898: sub_preempt_count <-
__raw_spin_unlock

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

74

 less-3062 [006]111 10698.878898: sub_preempt_count <-
migrate_disable
 <idle>-0 [000]1.. 10698.878898: set_cpu_sd_state_idle
<-tick_nohz_idle_enter
 cat-3061 [007] 10698.878898: free_delayed <-
__slab_alloc.isra.60
 less-3062 [006]11 10698.878898: migrate_disable <-
get_page_from_freelist
 less-3062 [006]11 10698.878898: add_preempt_count <-
migrate_disable
 <idle>-0 [000] d...1.. 10698.878898: __tick_nohz_idle_enter
<-tick_nohz_idle_enter
 less-3062 [006]112 10698.878898: sub_preempt_count <-
migrate_disable
 <idle>-0 [000] d...1.. 10698.878898: ktime_get <-
__tick_nohz_idle_enter
 cat-3061 [007] 10698.878898: __rt_mutex_init <-
tracing_open

The "function_graph" tracer is a bit more easy on the eyes, and lets
the developer follow the code in much more detail.

># echo function_graph > current_tracer
># cat trace
tracer: function_graph
#
CPU DURATION FUNCTION CALLS
| | | | | | |
 5) 0.125 us | source_load();
 5) 0.137 us | idle_cpu();
 5) 0.105 us | source_load();
 5) 0.110 us | idle_cpu();
 5) 0.132 us | source_load();
 5) 0.134 us | idle_cpu();
 5) 0.127 us | source_load();
 5) 0.144 us | idle_cpu();
 5) 0.132 us | source_load();
 5) 0.112 us | idle_cpu();
 5) 0.120 us | source_load();
 5) 0.130 us | idle_cpu();
 5) + 20.812 us | } /* find_busiest_group */
 5) + 21.905 us | } /* load_balance */
 5) 0.099 us | msecs_to_jiffies();
 5) 0.120 us | __rcu_read_unlock();
 5) | _raw_spin_lock() {
 5) 0.115 us | add_preempt_count();
 5) 1.115 us | }
 5) + 46.645 us | } /* idle_balance */
 5) | put_prev_task_rt() {
 5) | update_curr_rt() {
 5) | cpuacct_charge() {
 5) 0.110 us | __rcu_read_lock();
 5) 0.110 us | __rcu_read_unlock();
 5) 2.111 us | }
 5) 0.100 us | sched_avg_update();

Det ailed Descript ion of Ft race

75

 5) | _raw_spin_lock() {
 5) 0.116 us | add_preempt_count();
 5) 1.151 us | }
 5) 0.122 us | balance_runtime();
 5) 0.110 us | sub_preempt_count();
 5) 8.165 us | }
 5) 9.152 us | }
 5) 0.148 us | pick_next_task_fair();
 5) 0.112 us | pick_next_task_stop();
 5) 0.117 us | pick_next_task_rt();
 5) 0.123 us | pick_next_task_fair();
 5) 0.138 us | pick_next_task_idle();
 --
 5) ksoftir-39 => <idle>-0
 --

 5) | finish_task_switch() {
 5) | _raw_spin_unlock_irq() {
 5) 0.260 us | sub_preempt_count();
 5) 1.289 us | }
 5) 2.309 us | }
 5) 0.132 us | sub_preempt_count();
 5) ! 151.784 us | } /* __schedule */
 5) 0.272 us | } /* sub_preempt_count */

The "function" tracer only traces the start of the function where as the
"function_graph" tracer also traces the exit of the function, allowing
to show a flow of function calls in the kernel. As one function calls
the next function, it is indented in the trace and C code curly brackets
are placed around them. When there's a leaf function (a function that
does not call any other function, or any function that happens to be
traced), it is simply finished with a ";".

This tracer has a different format than the other tracers, to help
ease the reading of the trace. The first number "5)" represents the
CPU that the trace happened on. The second number is the time the
function took to execute. Note, this time also include the overhead
of the "function_graph" tracer itself, so for functions that have
several other functions traced within it, its time will be rather
exaggerated. For leaf functions, the time is rather accurate.

When a schedule switch is detected (does not require the sched_switch
event enabled, as all traces record the pid), it shows up as separately
displayed.

 --
 5) ksoftir-39 => <idle>-0
 --

The name is cropped to 7 characters (from "ksoftirqd" to "ksoftir").

Follow a function

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

76

Because the "function_graph" tracer records both the start and exit
of a function, several more features are possible. One of these features
is to graph only a specific function. That is, to see what a specific
function calls and ignore all other functions.

For example, if you are interested in what the sys_read() function
calls, you can use the "set_graph_function" file in the tracing
debug file system.

># echo sys_read > set_graph_function
># echo function_graph > current_tracer
># sleep 10
># cat trace
tracer: function_graph
#
CPU DURATION FUNCTION CALLS
| | | | | | |
 0) | sys_read() {
 0) 0.126 us | fget_light();
 0) | vfs_read() {
 0) | rw_verify_area() {
 0) | security_file_permission() {
 0) 0.077 us | cap_file_permission();
 0) 0.076 us | __fsnotify_parent();
 0) 0.100 us | fsnotify();
 0) 2.001 us | }
 0) 2.608 us | }
 0) | tty_read() {
 0) 0.070 us | tty_paranoia_check();
 0) | tty_ldisc_ref_wait() {
 0) | tty_ldisc_try() {
 0) | _raw_spin_lock_irqsave() {
 0) 0.130 us | add_preempt_count();
 0) 0.759 us | }
 0) | _raw_spin_unlock_irqrestore() {
 0) 0.132 us | sub_preempt_count();
 0) 0.774 us | }
 0) 2.576 us | }
 0) 3.161 us | }
 0) | n_tty_read() {
 0) | _mutex_lock_interruptible() {
 0) 0.087 us | rt_mutex_lock_interruptible();
 0) 0.694 us | }
 0) | add_wait_queue() {
 0) | migrate_disable() {
 0) 0.100 us | add_preempt_count();
 0) 0.073 us | pin_current_cpu();
 0) 0.085 us | sub_preempt_count();
 0) 1.829 us | }
 0) 0.060 us | rt_spin_lock();
 0) 0.065 us | rt_spin_unlock();
 0) | migrate_enable() {
 0) 0.077 us | add_preempt_count();
 0) 0.070 us | unpin_current_cpu();
 0) 0.077 us | sub_preempt_count();
 0) 1.847 us | }

Det ailed Descript ion of Ft race

77

 0) 5.899 us | }

The above shows the flow of functions called by sys_read().

To reset the "set_graph_function" simply write into that file like
the "set_ftrace_filter" file is done.

># echo > set_graph_function

Time a function

As the "function_graph" tracer is associated to the "function" tracer
it is also affected by the "set_ftrace_filter", "set_ftrace_notrace"
as well as the sysctl feature "kernel.ftrace_enabled".

As mentioned previously, only the leaf functions contain the most
accurate
times of execution. By filtering on a specific function, you can see
the time it takes to execute a single function.

># echo do_IRQ > set_ftrace_filter
># echo function_graph > current_tracer
># sleep 10
># cat trace
tracer: function_graph
#
CPU DURATION FUNCTION CALLS
| | | | | | |
 4) ==========> |
 4) 6.486 us | do_IRQ();
 0) ==========> |
 0) 3.801 us | do_IRQ();
 4) ==========> |
 4) 3.221 us | do_IRQ();
 0) ==========> |
 0) + 11.153 us | do_IRQ();
 0) ==========> |
 0) + 10.968 us | do_IRQ();
 6) ==========> |
 6) 9.280 us | do_IRQ();
 0) ==========> |
 0) 9.467 us | do_IRQ();
 0) ==========> |
 0) + 11.238 us | do_IRQ();

The "==========>" show when an interrupt entered. The "<==========" is
missing because it is associated with the exit part of the trace.
As "do_IRQ" is a leaf function here, the exit arrow was folded into
the function and does not appear in the trace.

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

78

Events in function graph tracer

As explained previously, events can be enabled with all tracers.
But with the "function_graph" tracer, they are displayed a little
differently.

># echo 1 > events/irq/enable
># echo do_IRQ > set_ftrace_filter
># echo function_graph > current_tracer
># sleep 10
># cat trace
tracer: function_graph
#
CPU DURATION FUNCTION CALLS
| | | | | | |
 5) ==========> |
 5) | do_IRQ() {
 5) | /* irq_handler_entry: irq=43 name=em1 */
 5) | /* irq_handler_exit: irq=43 ret=handled */
 5) + 15.721 us | }
 5) <========== |
 3) | /* softirq_raise: vec=3 [action=NET_RX] */
 3) | /* softirq_entry: vec=3 [action=NET_RX] */
 3) | /* softirq_exit: vec=3 [action=NET_RX] */
 0) ==========> |
 0) | do_IRQ() {
 0) | /* irq_handler_entry: irq=43 name=em1 */
 0) | /* irq_handler_exit: irq=43 ret=handled */
 0) 8.915 us | }
 0) <========== |
 3) | /* softirq_raise: vec=3 [action=NET_RX] */
 3) | /* softirq_entry: vec=3 [action=NET_RX] */
 3) | /* softirq_exit: vec=3 [action=NET_RX] */
 0) | /* softirq_raise: vec=1 [action=TIMER] */
 0) | /* softirq_raise: vec=9 [action=RCU] */
 --
 0) <idle>-0 => ksoftir-3
 --

 0) | /* softirq_entry: vec=1 [action=TIMER] */
 0) | /* softirq_exit: vec=1 [action=TIMER] */
 0) | /* softirq_entry: vec=9 [action=RCU] */
 0) | /* softirq_exit: vec=9 [action=RCU] */
 --
 0) ksoftir-3 => <idle>-0
 --

Keeping with the C formatting, events in the "function_graph" tracer
appear as comments. Recording the interrupt events gives more detail
to what interrupts are occurring when "do_IRQ()" is called. As the
"do_IRQ()" exit trace is not folded, the "<==========" appears to
display that the interrupt is over.

Det ailed Descript ion of Ft race

79

Annotations

In the traces, including the "function_graph" tracer, you may see
annotations around the times. "+" and "!". A "+" appears when the
time between events is greater than 10 microseconds, and a "!" appears
when that time is greater than 100 microseconds. You can see this in the
above tracers:

 <idle>-0 0d..h4.. 2us+: ttwu_do_activate.constprop.90 <-
try_to_wake_up
 <idle>-0 5d...3.. 63us : __schedule <-preempt_schedule

 5) + 20.812 us | } /* find_busiest_group */
 5) + 21.905 us | } /* load_balance */

 5) ! 151.784 us | } /* __schedule */

Buffer size

When tracing functions, you will almost always use events. This is
because
the amount of functions being traced will quickly fill the ring buffer
faster than anything can read from it. The amount lost can be minimized
with filtering the trace as well as increasing the size of the buffer.

The size of the buffer is controlled by the "buffer_size_kb" file.
As the name suggests, the size is in kilobytes. When you first boot up,
as tracing is used by only a small minority of users, the trace buffer
is compressed. The first time you use any of the tracing features,
the tracing buffer will automatically increase to a decent size.

># cat buffer_size_kb
7 (expanded: 1408)

Note, for efficiency reasons, the buffer is split into multiple buffers
per CPU. The size displayed by "buffer_size_kb" is the size of each
CPU buffer. To see the total size of all buffers look at
"buffer_total_size_kb"

># cat buffer_total_size_kb
56 (expanded: 11264)

After running any trace, the buffer will expand to the size that is
denoted by the "expanded" value.

># echo 1 > events/enable
># cat buffer_size_kb
1408

To change the size of the buffer, simply echo in a number.

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

80

># echo 10000 > buffer_size_kb
># cat buffer_size_kb
10000

Note, if you change the size before using any tracer, the buffers
will go to that size, and the expanded value will then be ignored.

Buffer size per CPU

If there's a case you care about activity on one CPU more than another
CPU, and you need to save memory, you can change the sizes of the
ring buffers per CPU. These files exist in a "per_cpu/cpuX/" directory.

># cat per_cpu/cpu1/buffer_size_kb
10000

># echo 100 > per_cpu/cpu1/buffer_size_kb
># cat per_cpu/cpu1/buffer_size_kb
100

When the per CPU buffers differ in size, the top level buffer_size_kb
will display an "X".

># cat buffer_size_kb
X

But the total size will still display the amount allocated.

># cat buffer_total_size_kb
70100

Trace Marker

It is sometimes useful to synchronize actions in userspace with events
within the kernel. The "trace_marker" allows userspace to write into
the ftrace buffer.

># echo hello world > trace_marker
># cat trace
tracer: nop
#
entries-in-buffer/entries-written: 1/1 #P:8
#
_-------=> irqs-off
/ _------=> need-resched
|/ _-----=> need-resched_lazy
||/ _----=> hardirq/softirq
|||/ _---=> preempt-depth
||||/ _--=> preempt-lazy-depth
||||| / _-=> migrate-disable
|||||| / delay
TASK-PID CPU# ||||||| TIMESTAMP FUNCTION

Det ailed Descript ion of Ft race

81

| | | ||||||| | |
 bash-1086 [001]11 21351.346541: tracing_mark_write:
hello world

Writing into the kernel is very light weight. User programs can take
advantage of this with the following C code:

 static int trace_fd = -1;

 void trace_write(const char *fmt, ...)
 {
 va_list ap;
 char buf[256];
 int n;

 if (trace_fd < 0)
 return;

 va_start(ap, fmt);
 n = vsnprintf(buf, 256, fmt, ap);
 va_end(ap);

 write(trace_fd, buf, n);
 }

 [...]

 trace_fd = open("trace_marker", WR_ONLY);

and later use the "trace_write()" function to record into the ftrace
buffer.

 trace_write("record this event\n");

tracer options

There are several options that can affect the formating of the trace
output as well as how the tracers behave. Some trace options only exist
for a given tracer and their control file appears only when the tracer
is activated.

The trace option control files exist in the "options" directory.

># ls options
annotate graph-time print-parent sym-userobj
bin hex raw test_nop_accept
block irq-info record-cmd test_nop_refuse
branch latency-format sleep-time trace_printk
context-info markers stacktrace userstacktrace
disable_on_free overwrite sym-addr verbose
ftrace_preempt printk-msg-only sym-offset

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

82

The "function_graph" tracer adds several of its own.

># echo function_graph > current_tracer
># ls options
annotate funcgraph-cpu irq-info sleep-time
bin funcgraph-duration latency-format stacktrace
block funcgraph-irqs markers sym-addr
branch funcgraph-overhead overwrite sym-offset
context-info funcgraph-overrun printk-msg-only sym-userobj
disable_on_free funcgraph-proc print-parent trace_printk
ftrace_preempt graph-time raw userstacktrace
funcgraph-abstime hex record-cmd verbose

 annotate - It is sometimes confusing when the CPU buffers are full
 and one CPU buffer had a lot of events recently, thus
 a shorter time frame, were another CPU may have only had
 a few events, which lets it have older events. When
 the trace is reported, it shows the oldest events first,
 and it may look like only one CPU ran (the one with the
 oldest events). When the annotate option is set, it will
 display when a new CPU buffer started:

 <idle>-0 [005] d...1.. 910.328077: cpuidle_wrap_enter <-
cpuidle_enter_tk
 <idle>-0 [005] d...1.. 910.328077: ktime_get <-
cpuidle_wrap_enter
 <idle>-0 [005] d...1.. 910.328078: intel_idle <-
cpuidle_enter
 <idle>-0 [005] d...1.. 910.328078: leave_mm <-intel_idle
CPU 7 buffer started
 <idle>-0 [007] d...1.. 910.360866:
tick_do_update_jiffies64 <-tick_check_idle
 <idle>-0 [007] d...1.. 910.360866: _raw_spin_lock <-
tick_do_update_jiffies64
 <idle>-0 [007] d...1.. 910.360866: add_preempt_count <-
_raw_spin_lock

 bin - This will print out the formats in raw binary.

 block - When set, reading trace_pipe will not block when polled.

 context-info - Show only the event data. Hides the comm, PID,
 timestamp, CPU, and other useful data.

 disable_on_free - When the free_buffer is closed, tracing will
 stop (tracing_on set to 0).

 ftrace_preempt - Normally the function tracer disables interrupts as
 the recursion protection will hide interrupts from
being
 traced if the interrupt happened while another function
 was being traced. If this option is enabled, then it
 will not disable interrupts but will only disable

Det ailed Descript ion of Ft race

83

 preemption. But note, if an interrupt were to arrive
 when another function is being traced, all functions
 within that interrupt will not be traced, as function
 tracing is temporarily disablde for recursion
protection.

 graph-time - When running function graph tracer, to include the
 time to call nested functions. When this is not set,
 the time reported for the function will only include
 the time the function itself executed for, not the time
 for functions that it called.

 hex - Similar to raw, but the numbers will be in a hexadecimal
 format.

 irq-info - Shows the interrupt, preempt count, need resched data.
 When disabled, the trace looks like:

tracer: function
#
entries-in-buffer/entries-written: 319494/4972382 #P:8
#
TASK-PID CPU# TIMESTAMP FUNCTION
| | | | |
 <idle>-0 [004] 983.062800: lock_hrtimer_base.isra.25 <-
__hrtimer_start_range_ns
 <idle>-0 [004] 983.062801: _raw_spin_lock_irqsave <-
lock_hrtimer_base.isra.25
 <idle>-0 [004] 983.062801: add_preempt_count <-
_raw_spin_lock_irqsave
 <idle>-0 [004] 983.062801: __remove_hrtimer <-
__hrtimer_start_range_ns
 <idle>-0 [004] 983.062801: hrtimer_force_reprogram <-
__remove_hrtimer

 latency-format - This option changes the trace. When
 it is enabled, the trace displays
 additional information about the
 latencies, as described in "Latency
 trace format".

 markers - When set, the trace_marker is writable (only by root).
 When disabled, the trace_marker will error with EINVAL
 on write.

 overwrite - This controls what happens when the trace buffer is
 full. If "1" (default), the oldest events are
 discarded and overwritten. If "0", then the newest
 events are discarded.
 (see per_cpu/cpu0/stats for overrun and dropped)

 printk-msg-only - When set, trace_printk()s will only show the format
 and not their parameters (if trace_bprintk() or
 trace_bputs() was used to save the trace_printk()).

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

84

 print-parent - On function traces, display the calling (parent)
 function as well as the function being traced.

 print-parent:
 bash-1423 [006] 1755.774709: msecs_to_jiffies <-idle_balance

 noprint-parent:
 bash-1423 [006] 1755.774709: msecs_to_jiffies

 raw - This will display raw numbers. This option is best for
 use with user applications that can translate the raw
 numbers better than having it done in the kernel.

 record-cmd - When any event or tracer is enabled, a hook is enabled
 in the sched_switch trace point to fill comm cache
 with mapped pids and comms. But this may cause some
 overhead, and if you only care about pids, and not the
 name of the task, disabling this option can lower the
 impact of tracing.

 sleep-time - When running function graph tracer, to include
 the time a task schedules out in its function.
 When enabled, it will account time the task has been
 scheduled out as part of the function call.

 stacktrace - This is one of the options that changes the trace
 itself. When a trace is recorded, so is the stack
 of functions. This allows for back traces of
 trace sites.

 sym-addr - this will also display the function address as well
 as the function name.

 sym-offset - Display not only the function name, but also the
 offset in the function. For example, instead of
 seeing just "ktime_get", you will see
 "ktime_get+0xb/0x20".

 sym-offset:
 bash-1423 [006] 1755.774709: msecs_to_jiffies+0x0/0x20

 sym-addr:
 bash-1423 [006] 1755.774709: msecs_to_jiffies <ffffffff8106b5f0>

 sym-userobj - when user stacktrace are enabled, look up which
 object the address belongs to, and print a
 relative address. This is especially useful when
 ASLR is on, otherwise you don't get a chance to
 resolve the address to object/file/line after
 the app is no longer running

 The lookup is performed when you read
 trace,trace_pipe. Example:

Det ailed Descript ion of Ft race

85

 a.out-1623 [000] 40874.465068: /root/a.out[+0x480] <-
/root/a.out[+0x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]

 trace_printk - Can disable trace_printk() from writing into the buffer.

 userstacktrace - This option changes the trace. It records a
 stacktrace of the current userspace thread at each
event.

 verbose - This deals with the trace file when the
 latency-format option is enabled.

 bash 4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
 (+0.000ms): simple_strtoul (strict_strtoul)

This has been quite an in depth look at how to use ftrace via the
debug file system. But it can be quite daunting to handle all these
different files. Luckily, there's a tool that can do most of this
work for you. It's called "trace-cmd".

Using trace-cmd

trace-cmd is a tool that interacts with the ftrace tracing facility.
It reads and writes to the same files that are described above as
well as reading the files that can transfer the binary data of
the kernel tracing buffers in an efficient manner to be read later.
The tool is very simple and easy to use.

There are several man pages for trace-cmd. First look at

 man trace-cmd

to find out more information on the other commands. All of trace-cmd's
commands also have their own man pages in the format of:

 man trace-cmd-<command>

For example, the "record" command's man page is under trace-cmd-record.

This document will describe all the options for each command, but
instead will briefly discuss how to use trace-cmd and describe most of
its commands.

trace-cmd record and report

To use ftrace tracers and events you must first have to start tracing
by either echoing a name of a tracer into the "current_tracer" file
or by echoing "1" into one of the event "enable" files.

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

86

For trace-cmd, the record option starts the tracing and will also save
the traced data into a file. Let's start with an example:

># cd ~
># trace-cmd record -p function
 plugin 'function'
Hit Ctrl^C to stop recording
(^C)
Kernel buffer statistics:
 Note: "entries" are the entries left in the kernel ring buffer and are
not
 recorded in the trace data. They should all be zero.

CPU: 0
entries: 0
overrun: 38650181
commit overrun: 0
bytes: 3060
oldest event ts: 15634.891771
now ts: 15634.953219
dropped events: 0

CPU: 1
entries: 0
overrun: 38523960
commit overrun: 0
bytes: 1368
oldest event ts: 15634.891771
now ts: 15634.953938
dropped events: 0

CPU: 2
entries: 0
overrun: 41461508
commit overrun: 0
bytes: 1872
oldest event ts: 15634.891773
now ts: 15634.954630
dropped events: 0

CPU: 3
entries: 0
overrun: 38246206
commit overrun: 0
bytes: 36
oldest event ts: 15634.891785
now ts: 15634.955263
dropped events: 0

CPU: 4
entries: 0
overrun: 32730902
commit overrun: 0
bytes: 432
oldest event ts: 15634.891716

Det ailed Descript ion of Ft race

87

now ts: 15634.955952
dropped events: 0

CPU: 5
entries: 0
overrun: 33264601
commit overrun: 0
bytes: 2952
oldest event ts: 15634.891769
now ts: 15634.956630
dropped events: 0

CPU: 6
entries: 0
overrun: 30974204
commit overrun: 0
bytes: 2484
oldest event ts: 15634.891772
now ts: 15634.957249
dropped events: 0

CPU: 7
entries: 0
overrun: 32374274
commit overrun: 0
bytes: 3564
oldest event ts: 15634.891652
now ts: 15634.957938
dropped events: 0

CPU0 data recorded at offset=0x302000
 146325504 bytes in size
CPU1 data recorded at offset=0x8e8e000
 148217856 bytes in size
CPU2 data recorded at offset=0x11be8000
 148066304 bytes in size
CPU3 data recorded at offset=0x1a91d000
 146219008 bytes in size
CPU4 data recorded at offset=0x2348f000
 145940480 bytes in size
CPU5 data recorded at offset=0x2bfbd000
 145403904 bytes in size
CPU6 data recorded at offset=0x34a68000
 141570048 bytes in size
CPU7 data recorded at offset=0x3d16b000
 147513344 bytes in size

The "-p" is for ftrace tracers (use to be known as 'plugins' and the name
is kept for historical reasons). In this case we started the
"function" tracer. Since we did not add a command to execute, by
default, trace-cmd will just start the tracing and record the data
and wait for the user to hit Ctrl^C to stop.

When the trace stops, it prints out status of each of the kernel's
per cpu trace buffers. The are:

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

88

 entries: - Which is the number of entries still in the kernel buffer.
 Ideally this should be zero, as trace-cmd would consume
them
 all and put them into the data file.

 overrun: - As tracing can be much faster than the saving of data,
 events can be lost due to overwriting of the old events
 that were not consumed yet when the buffer filled up.
 This is the number of events that were lost.

 The "function" tracer can fill up the buffer extremely fast
 it is not uncommon to lose millions of events when
 tracing functions for any length of time.

 commit overrun: - This should always be zero, and if it is not, then
 the buffer size is way too small or something went wrong
 with the tracer.

 bytes: - The number of bytes consumed (not read as pages). This is
 more a status for developers of the tracing utitily.

 oldest event ts: - The timestamp for the oldest event still in the ring
 buffer. Unless it gets overwritten, it will be the timestamp
 of the next event read.

 now ts: The current timestamp used by the tracing facility.

 dropped events: - If the buffer has overwrite mode disabled (from the
 trace options), then this will show the number of events that
 were lost due to not being able to write to the buffer because
 it was full. This is similar to the overrun field except that
 those are events that made it into the buffer but were
overwritten.

By default, the file used to record the trace is called "trace.dat".
You can override the output file with the -o option.

To read the trace.dat file, simply run the trace-cmd report command:

># trace-cmd report
version = 6
cpus=8
 trace-cmd-3735 [003] 15618.722889: function:
__hrtimer_start_range_ns
 trace-cmd-3734 [002] 15618.722889: function:
_mutex_unlock
 <idle>-0 [000] 15618.722889: function:
cpuidle_wrap_enter
 trace-cmd-3735 [003] 15618.722890: function:
lock_hrtimer_base.isra.25
 trace-cmd-3734 [002] 15618.722890: function:
rt_mutex_unlock
 <idle>-0 [000] 15618.722890: function:

Det ailed Descript ion of Ft race

89

ktime_get
 trace-cmd-3735 [003] 15618.722890: function:
_raw_spin_lock_irqsave
 trace-cmd-3735 [003] 15618.722891: function:
add_preempt_count
 trace-cmd-3734 [002] 15618.722891: function:
__fsnotify_parent
 <idle>-0 [000] 15618.722891: function:
intel_idle
 trace-cmd-3735 [003] 15618.722891: function:
idle_cpu
 trace-cmd-3734 [002] 15618.722891: function: fsnotify
 <idle>-0 [000] 15618.722891: function:
leave_mm
 trace-cmd-3735 [003] 15618.722891: function:
ktime_get
 trace-cmd-3734 [002] 15618.722891: function:
__srcu_read_lock
 <idle>-0 [000] 15618.722891: function:
__phys_addr
 trace-cmd-3734 [002] 15618.722891: function:
add_preempt_count
 trace-cmd-3735 [003] 15618.722891: function:
enqueue_hrtimer
 trace-cmd-3735 [003] 15618.722892: function:
_raw_spin_unlock_irqrestore
 trace-cmd-3734 [002] 15618.722892: function:
sub_preempt_count
 trace-cmd-3735 [003] 15618.722892: function:
sub_preempt_count
 trace-cmd-3734 [002] 15618.722892: function:
__srcu_read_unlock
 trace-cmd-3735 [003] 15618.722892: function: schedule
 trace-cmd-3734 [002] 15618.722892: function:
add_preempt_count
 trace-cmd-3735 [003] 15618.722893: function:
__schedule
 trace-cmd-3734 [002] 15618.722893: function:
sub_preempt_count
 trace-cmd-3735 [003] 15618.722893: function:
add_preempt_count
 trace-cmd-3735 [003] 15618.722893: function:
rcu_note_context_switch
 trace-cmd-3734 [002] 15618.722893: function:
__audit_syscall_exit
 trace-cmd-3735 [003] 15618.722893: function:
_raw_spin_lock_irq
 trace-cmd-3735 [003] 15618.722894: function:
add_preempt_count
 trace-cmd-3734 [002] 15618.722894: function:
path_put
 trace-cmd-3735 [003] 15618.722894: function:
deactivate_task
 trace-cmd-3734 [002] 15618.722894: function:
dput
 trace-cmd-3735 [003] 15618.722894: function:

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

90

dequeue_task
 trace-cmd-3734 [002] 15618.722894: function:
mntput
 trace-cmd-3735 [003] 15618.722894: function:
update_rq_clock
 trace-cmd-3734 [002] 15618.722894: function:
unroll_tree_refs

To filter out a CPU, use the --cpu option.

># trace-cmd report --cpu 1
version = 6
cpus=8
 <idle>-0 [001] 15618.723287: function:
ktime_get
 <idle>-0 [001] 15618.723288: function:
smp_apic_timer_interrupt
 <idle>-0 [001] 15618.723289: function:
irq_enter
 <idle>-0 [001] 15618.723289: function:
rcu_irq_enter
 <idle>-0 [001] 15618.723289: function:
rcu_eqs_exit_common.isra.45
 <idle>-0 [001] 15618.723289: function:
tick_check_idle
 <idle>-0 [001] 15618.723290: function:
tick_check_oneshot_broadcast
 <idle>-0 [001] 15618.723290: function:
ktime_get
 <idle>-0 [001] 15618.723290: function:
tick_nohz_stop_idle
 <idle>-0 [001] 15618.723290: function:
update_ts_time_stats
 <idle>-0 [001] 15618.723290: function:
nr_iowait_cpu
 <idle>-0 [001] 15618.723291: function:
touch_softlockup_watchdog
 <idle>-0 [001] 15618.723291: function:
tick_do_update_jiffies64
 <idle>-0 [001] 15618.723291: function:
touch_softlockup_watchdog
 <idle>-0 [001] 15618.723291: function:
irqtime_account_irq
 <idle>-0 [001] 15618.723292: function:
in_serving_softirq
 <idle>-0 [001] 15618.723292: function:
add_preempt_count
 <idle>-0 [001] 15618.723292: function:
exit_idle
 <idle>-0 [001] 15618.723292: function:
atomic_notifier_call_chain
 <idle>-0 [001] 15618.723293: function:
__atomic_notifier_call_chain
 <idle>-0 [001] 15618.723293: function:
__rcu_read_lock

Det ailed Descript ion of Ft race

91

Notice how the functions are indented similar to the function_graph
tracer. This is because trace-cmd can post process the trace data
with more complex algorithms than are acceptable to implement in the
kernel. It uses the parent function to follow which function is called
by other functions and be able to deduce a call graph.

To disable the indentation, use the -O report option.

># trace-cmd report --cpu 1 -O indent=0
version = 6
cpus=8
 <idle>-0 [001] 15618.723287: function:
ktime_get
 <idle>-0 [001] 15618.723288: function:
smp_apic_timer_interrupt
 <idle>-0 [001] 15618.723289: function:
irq_enter
 <idle>-0 [001] 15618.723289: function:
rcu_irq_enter
 <idle>-0 [001] 15618.723289: function:
rcu_eqs_exit_common.isra.45
 <idle>-0 [001] 15618.723289: function:
tick_check_idle
 <idle>-0 [001] 15618.723290: function:
tick_check_oneshot_broadcast
 <idle>-0 [001] 15618.723290: function:
ktime_get
 <idle>-0 [001] 15618.723290: function:
tick_nohz_stop_idle
 <idle>-0 [001] 15618.723290: function:
update_ts_time_stats
 <idle>-0 [001] 15618.723290: function:
nr_iowait_cpu
 <idle>-0 [001] 15618.723291: function:
touch_softlockup_watchdog
 <idle>-0 [001] 15618.723291: function:
tick_do_update_jiffies64
 <idle>-0 [001] 15618.723291: function:
touch_softlockup_watchdog

To add back the parent:

># trace-cmd report --cpu 1 -O indent=0 -O parent=1
version = 6
cpus=8
 <idle>-0 [001] 15618.723287: function:
ktime_get <-- cpuidle_wrap_enter
 <idle>-0 [001] 15618.723288: function:
smp_apic_timer_interrupt <-- apic_timer_interrupt
 <idle>-0 [001] 15618.723289: function:
irq_enter <-- smp_apic_timer_interrupt
 <idle>-0 [001] 15618.723289: function:
rcu_irq_enter <-- irq_enter

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

92

 <idle>-0 [001] 15618.723289: function:
rcu_eqs_exit_common.isra.45 <-- rcu_irq_enter
 <idle>-0 [001] 15618.723289: function:
tick_check_idle <-- irq_enter
 <idle>-0 [001] 15618.723290: function:
tick_check_oneshot_broadcast <-- tick_check_idle
 <idle>-0 [001] 15618.723290: function:
ktime_get <-- tick_check_idle
 <idle>-0 [001] 15618.723290: function:
tick_nohz_stop_idle <-- tick_check_idle
 <idle>-0 [001] 15618.723290: function:
update_ts_time_stats <-- tick_nohz_stop_idle
 <idle>-0 [001] 15618.723290: function:
nr_iowait_cpu <-- update_ts_time_stats
 <idle>-0 [001] 15618.723291: function:
touch_softlockup_watchdog <-- sched_clock_idle_wakeup_event
 <idle>-0 [001] 15618.723291: function:
tick_do_update_jiffies64 <-- tick_check_idle
 <idle>-0 [001] 15618.723291: function:
touch_softlockup_watchdog <-- tick_check_idle
 <idle>-0 [001] 15618.723291: function:
irqtime_account_irq <-- irq_enter
 <idle>-0 [001] 15618.723292: function:
in_serving_softirq <-- irqtime_account_irq
 <idle>-0 [001] 15618.723292: function:
add_preempt_count <-- irq_enter
 <idle>-0 [001] 15618.723292: function:
exit_idle <-- smp_apic_timer_interrupt
 <idle>-0 [001] 15618.723292: function:
atomic_notifier_call_chain <-- exit_idle
 <idle>-0 [001] 15618.723293: function:
__atomic_notifier_call_chain <-- atomic_notifier_call_chain

Now the trace looks similar to the debug file system output.

Use the "-e" option to record events:

># trace-cmd record -e sched_switch
/sys/kernel/debug/tracing/events/sched_switch/filter
/sys/kernel/debug/tracing/events/*/sched_switch/filter
Hit Ctrl^C to stop recording
(^C)
[...]

># trace-cmd report
version = 6
cpus=8
 <idle>-0 [006] 21642.751755: sched_switch:
swapper/6:0 [120] R ==> trace-cmd:4876 [120]
 <idle>-0 [002] 21642.751776: sched_switch:
swapper/2:0 [120] R ==> sshd:1208 [120]
 trace-cmd-4875 [005] 21642.751782: sched_switch: trace-
cmd:4875 [120] D ==> swapper/5:0 [120]

Det ailed Descript ion of Ft race

93

 trace-cmd-4869 [001] 21642.751792: sched_switch: trace-
cmd:4869 [120] S ==> swapper/1:0 [120]
 trace-cmd-4873 [003] 21642.751819: sched_switch: trace-
cmd:4873 [120] S ==> swapper/3:0 [120]
 <idle>-0 [005] 21642.751835: sched_switch:
swapper/5:0 [120] R ==> trace-cmd:4875 [120]
 trace-cmd-4877 [007] 21642.751847: sched_switch: trace-
cmd:4877 [120] D ==> swapper/7:0 [120]
 sshd-1208 [002] 21642.751875: sched_switch: sshd:1208
[120] S ==> swapper/2:0 [120]
 <idle>-0 [007] 21642.751880: sched_switch:
swapper/7:0 [120] R ==> trace-cmd:4877 [120]
 trace-cmd-4874 [004] 21642.751885: sched_switch: trace-
cmd:4874 [120] S ==> swapper/4:0 [120]
 <idle>-0 [001] 21642.751902: sched_switch:
swapper/1:0 [120] R ==> irq/43-em1:865 [49]
 trace-cmd-4876 [006] 21642.751903: sched_switch: trace-
cmd:4876 [120] D ==> swapper/6:0 [120]
 <idle>-0 [006] 21642.751926: sched_switch:
swapper/6:0 [120] R ==> trace-cmd:4876 [120]
 irq/43-em1-865 [001] 21642.751927: sched_switch: irq/43-
em1:865 [49] S ==> swapper/1:0 [120]
 trace-cmd-4875 [005] 21642.752029: sched_switch: trace-
cmd:4875 [120] S ==> swapper/5:0 [120]

Notice that only the "sched_switch" name was used. trace-cmd will
search for a match of "-e"'s option for trace event systems, or single
trace events themselves. To trace all interrupt events:

># trace-cmd record -e irq sleep 10
/sys/kernel/debug/tracing/events/irq/filter
/sys/kernel/debug/tracing/events/*/irq/filter
[...]

Notice that when a command is passed to trace-cmd, it will just run that
command and exit the trace when complete.

># trace-cmd report
version = 6
cpus=8
 <idle>-0 [002] 21767.342089: softirq_raise: vec=9
[action=RCU]
 sleep-4917 [007] 21767.342089: softirq_raise: vec=9
[action=RCU]
 <idle>-0 [006] 21767.342089: softirq_raise: vec=9
[action=RCU]
 ksoftirqd/0-3 [000] 21767.342096: softirq_entry: vec=1
[action=TIMER]
 ksoftirqd/4-33 [004] 21767.342096: softirq_entry: vec=1
[action=TIMER]
 ksoftirqd/3-27 [003] 21767.342097: softirq_entry: vec=1
[action=TIMER]
 ksoftirqd/7-51 [007] 21767.342097: softirq_entry: vec=1
[action=TIMER]
 ksoftirqd/4-33 [004] 21767.342097: softirq_exit: vec=1

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

94

[action=TIMER]

To get the status information of events similar to what the debug
file system provides, add the "-l" (think "latency") option to the
report.

># trace-cmd report -l
version = 6
cpus=8
 <idle>-0 3d.h20 21767.341545: softirq_raise: vec=8
[action=HRTIMER]
ksoftirq-27 3...11 21767.341552: softirq_entry: vec=8
[action=HRTIMER]
ksoftirq-27 3...11 21767.341554: softirq_exit: vec=8
[action=HRTIMER]
 <idle>-0 4d.h20 21767.342085: softirq_raise: vec=7
[action=SCHED]
 <idle>-0 0d.h20 21767.342086: softirq_raise: vec=7
[action=SCHED]
 <idle>-0 3d.h20 21767.342086: softirq_raise: vec=7
[action=SCHED]
 sleep-4917 7d.h10 21767.342086: softirq_raise: vec=7
[action=SCHED]
 <idle>-0 6d.h20 21767.342087: softirq_raise: vec=7
[action=SCHED]
 <idle>-0 2d.h20 21767.342087: softirq_raise: vec=1
[action=TIMER]
 <idle>-0 1d.h20 21767.342087: softirq_raise: vec=1
[action=TIMER]

Tracing all events

As mentioned above, the "-e" option to trace-cmd record is to choose
what event should be traced. You can specify either an individual event,
or a trace system:

># trace-cmd record -e irq

The above enables all tracepoints within the "irq" system.

># trace-cmd record -e irq_handler_enter
># trace-cmd record -e irq:irq_handler_enter

The commands above are equivalent and will enable the tracepoint
event "irq_handler_enter".

But then there is the case where you want to trace all events.
To do this, use the keyword "all".

># trace-cmd record -e all

Det ailed Descript ion of Ft race

95

This will enable all events.

Tracing tracers and events

As events can be enabled within any tracer, it makes sense that trace-cmd
would allow this as well. This is indeed the case. You may use both
the "-p" and the "-e" options at the same time.

># trace-cmd record -p function_graph -e all
[...]
># trace-cmd report
version = 6
cpus=8
 trace-cmd-1698 [002] 2724.485397: funcgraph_entry:
| kmem_cache_alloc() {
 trace-cmd-1699 [007] 2724.485397: funcgraph_entry: 0.073
us | find_vma();
 trace-cmd-1696 [000] 2724.485397: funcgraph_entry:
| lg_local_lock() {
 trace-cmd-1698 [002] 2724.485397: funcgraph_entry: 0.033
us | add_preempt_count();
 trace-cmd-1696 [000] 2724.485397: funcgraph_entry:
| migrate_disable() {
 trace-cmd-1699 [007] 2724.485398: funcgraph_entry:
| handle_mm_fault() {
 trace-cmd-1696 [000] 2724.485398: funcgraph_entry: 0.027
us | add_preempt_count();
 trace-cmd-1698 [002] 2724.485398: funcgraph_entry: 0.034
us | sub_preempt_count();
 trace-cmd-1699 [007] 2724.485398: funcgraph_entry:
| __mem_cgroup_count_vm_event() {
 trace-cmd-1696 [000] 2724.485398: funcgraph_entry: 0.031
us | pin_current_cpu();
 trace-cmd-1699 [007] 2724.485398: funcgraph_entry: 0.029
us | __rcu_read_lock();
 trace-cmd-1698 [002] 2724.485398: kmem_cache_alloc:
(return_to_handler+0x0) call_site=ffffffff81662345 ptr=0xffff880114e260f0
bytes_req=240 bytes_alloc=240 gfp_flags=G
FP_KERNEL
 trace-cmd-1696 [000] 2724.485398: funcgraph_entry: 0.034
us | sub_preempt_count();
 trace-cmd-1699 [007] 2724.485398: funcgraph_entry: 0.028
us | __rcu_read_unlock();
 trace-cmd-1698 [002] 2724.485398: funcgraph_exit: 0.758
us | }
 trace-cmd-1698 [002] 2724.485398: funcgraph_entry: 0.029
us | __rt_mutex_init();
 trace-cmd-1696 [000] 2724.485398: funcgraph_exit: 0.727
us | }
 trace-cmd-1699 [007] 2724.485398: funcgraph_exit: 0.466
us | }

Notice here that trace-cmd report does not disply the function graph

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

96

tracer any different than any other trace, like the "trace" file does.

Function filtering

The "set_ftrace_filter" and "set_ftrace_notrace" is very useful in
filtering out functions that you do not care about. These can be done
with trace-cmd as well.

The "-l" and "-n" are used the same as "set_ftrace_filter" and
"set_ftrace_notrace" respectively. Think of "limit functions" for
"-l" as the "-f" is used for event filtering.

To add more than one function to the list, either used the glob
expressions
described previously, or use multiple "-l" or "-n" options.

># trace-cmd record -p function -l "sched*" -n "*stat*"

The above traces all functions that start with "sched" except those that
have "stat" in their names.

Event filtering

To filter events the same way as writing to the "filter" file inside
the "events" directory (see "Filtering events" above), use the "-f"
option. This option must follow the event that it will filter.

># trace-cmd record -e sched_switch -f "prev_prio < 100" \
 -e sched_wakeup -f 'comm == "bash"'

Graph a function

To perform a graph of a specific function using "function_graph" tracer,
trace-cmd provides the "-g" option.

># trace-cmd record -p function_graph -g sys_read ls /
[...]
># trace-cmd report
version = 6
CPU 3 is empty
CPU 4 is empty
CPU 5 is empty
cpus=8
 trace-cmd-2183 [006] 4689.643252: funcgraph_entry:
| sys_read() {
 trace-cmd-2183 [006] 4689.643253: funcgraph_entry: 0.147
us | fget_light();
 trace-cmd-2183 [006] 4689.643254: funcgraph_entry:
| vfs_read() {

Det ailed Descript ion of Ft race

97

 trace-cmd-2183 [006] 4689.643254: funcgraph_entry:
| rw_verify_area() {
 trace-cmd-2183 [006] 4689.643255: funcgraph_entry:
| security_file_permission() {
 trace-cmd-2183 [006] 4689.643255: funcgraph_entry: 0.068
us | cap_file_permission();
 trace-cmd-2183 [006] 4689.643256: funcgraph_entry: 0.064
us | __fsnotify_parent();
 trace-cmd-2183 [006] 4689.643256: funcgraph_entry: 0.095
us | fsnotify();
 trace-cmd-2183 [006] 4689.643257: funcgraph_exit: 1.792
us | }
 trace-cmd-2183 [006] 4689.643257: funcgraph_exit: 2.328
us | }
 trace-cmd-2183 [006] 4689.643257: funcgraph_entry:
| seq_read() {
 trace-cmd-2183 [006] 4689.643257: funcgraph_entry:
| _mutex_lock() {
 trace-cmd-2183 [006] 4689.643258: funcgraph_entry: 0.062
us | rt_mutex_lock();
 trace-cmd-2183 [006] 4689.643258: funcgraph_exit: 0.584
us | }
 trace-cmd-2183 [006] 4689.643259: funcgraph_entry:
| m_start() {
 trace-cmd-2183 [006] 4689.643259: funcgraph_entry:
| rt_down_read() {
 trace-cmd-2183 [006] 4689.643259: funcgraph_entry:
| rt_mutex_lock() {

Modify trace buffer size via trace-cmd

The trace-cmd record "-b" option lets you change the size of the
ftrace buffer before recording the trace. Note, currently trace-cmd
does not support per-cpu resize. The size is what is entered into
"buffer_size_kb" at the top level.

># trace-cmd record -b 10000 -p function

trace-cmd start, stop and extract

The trace-cmd start command takes almost all the options as the trace-cmd
record command does. The difference between the two is that "start"
will only enable ftrace, it will not do any recording. It is equivalent
to enabling ftrace via the debug file system.

># trace-cmd start -p function -e all
># cat /sys/kernel/debug/tracing/trace
tracer: function
#
entries-in-buffer/entries-written: 1544167/2039168 #P:8
#

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

98

_-------=> irqs-off
/ _------=> need-resched
|/ _-----=> need-resched_lazy
||/ _----=> hardirq/softirq
|||/ _---=> preempt-depth
||||/ _--=> preempt-lazy-depth
||||| / _-=> migrate-disable
|||||| / delay
TASK-PID CPU# ||||||| TIMESTAMP FUNCTION
| | | ||||||| | |
 trace-cmd-2390 [003] 5946.816132: _mutex_unlock <-
rb_simple_write
 trace-cmd-2390 [003] 5946.816133: rt_mutex_unlock <-
_mutex_unlock
 trace-cmd-2390 [003] 5946.816134: __fsnotify_parent <-
vfs_write
 trace-cmd-2390 [003] 5946.816134: fsnotify <-vfs_write
 trace-cmd-2390 [003] 5946.816135: __srcu_read_lock <-
fsnotify
 trace-cmd-2390 [003] 5946.816135: add_preempt_count <-
__srcu_read_lock
 trace-cmd-2390 [003]1.. 5946.816135: sub_preempt_count <-
__srcu_read_lock
 trace-cmd-2390 [003] 5946.816135: __srcu_read_unlock <-
fsnotify
 trace-cmd-2390 [003] 5946.816136: add_preempt_count <-
__srcu_read_unlock
 trace-cmd-2390 [003]1.. 5946.816136: sub_preempt_count <-
__srcu_read_unlock
 trace-cmd-2390 [003] 5946.816137: syscall_trace_leave <-
int_check_syscall_exit_work
 trace-cmd-2390 [003] 5946.816137: __audit_syscall_exit
<-syscall_trace_leave
 trace-cmd-2390 [003] 5946.816137: path_put <-
__audit_syscall_exit
 trace-cmd-2390 [003] 5946.816137: dput <-path_put
 trace-cmd-2390 [003] 5946.816138: mntput <-path_put
 trace-cmd-2390 [003] 5946.816138: unroll_tree_refs <-
__audit_syscall_exit
 trace-cmd-2390 [003] 5946.816138: kfree <-
__audit_syscall_exit
 trace-cmd-2390 [003]1.. 5946.816139: kfree:
call_site=ffffffff810eaff0 ptr= (null)
 trace-cmd-2390 [003]1.. 5946.816139: sys_exit: NR 1 = 1
 trace-cmd-2390 [003] d...... 5946.816140: sys_write -> 0x1
 trace-cmd-2390 [003] d...... 5946.816151: do_page_fault <-
page_fault
 trace-cmd-2390 [003] d...... 5946.816151: __do_page_fault <-
do_page_fault
 trace-cmd-2390 [003] 5946.816152: rt_down_read_trylock
<-__do_page_fault
 trace-cmd-2390 [003] 5946.816152: rt_mutex_trylock <-
rt_down_read_trylock

Running trace-cmd stop is exactly the same as echoing "0" into the

Det ailed Descript ion of Ft race

99

"tracing_on" file in the debug file system. This only stops writing to
the trace buffers, it does not stop all the tracing mechanisms inside
the kernel and still adds some overhead to the system.

># cat /sys/kernel/debug/tracing/tracing_on
1
># trace-cmd stop
># cat /sys/kernel/debug/tracing/tracing_on
0

Finally, if you want to create a "trace.dat" file from the ftrace
kernel buffers you use the "extract" command. The tracing could
have started with the "start" command or by manually modifying the
ftrace debug file system files. This is useful if you found a trace
and want to save it off where you can send it to other people, and
also have the full features of the trace-cmd "report" command.

># trace-cmd extract
># trace-cmd report
version = 6
cpus=8
CPU:6 [2544372 EVENTS DROPPED]
 ksoftirqd/6-45 [006] 6192.717580: function:
rcu_note_context_switch
 ksoftirqd/6-45 [006] 6192.717580: rcu_utilization:
ffffffff819e743b
 ksoftirqd/6-45 [006] 6192.717580: rcu_utilization:
ffffffff819e7450
 ksoftirqd/6-45 [006] 6192.717581: function:
add_preempt_count
 ksoftirqd/6-45 [006] 6192.717581: function:
kthread_should_stop
 ksoftirqd/6-45 [006] 6192.717581: function:
kthread_should_park
 ksoftirqd/6-45 [006] 6192.717581: function:
ksoftirqd_should_run
 ksoftirqd/6-45 [006] 6192.717582: function:
sub_preempt_count
 ksoftirqd/6-45 [006] 6192.717582: function: schedule
 ksoftirqd/6-45 [006] 6192.717582: function:
__schedule
 ksoftirqd/6-45 [006] 6192.717582: function:
add_preempt_count
 ksoftirqd/6-45 [006] 6192.717582: function:
rcu_note_context_switch
 ksoftirqd/6-45 [006] 6192.717583: rcu_utilization:
ffffffff819e743b
 ksoftirqd/6-45 [006] 6192.717583: rcu_utilization:
ffffffff819e7450
 ksoftirqd/6-45 [006] 6192.717583: function:
_raw_spin_lock_irq
 ksoftirqd/6-45 [006] 6192.717583: function:
add_preempt_count
 ksoftirqd/6-45 [006] 6192.717584: function:
deactivate_task

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

100

 ksoftirqd/6-45 [006] 6192.717584: function:
dequeue_task
 ksoftirqd/6-45 [006] 6192.717584: function:
update_rq_clock

The "extract" command takes a "-o" option to save the trace in a
different
name like the "record" command does. By default it just saves it into
a file called "trace.dat".

Resetting the trace

As mentioned, the "stop" command does not lower the overhead of ftrace.
It simply disables writing to the ftrace buffer. There's two ways of
resetting ftrace with trace-cmd.

The first way is with the "reset" command.

># trace-cmd reset

This disables practically everything in ftrace. It also sets the
"tracing_on" file to "0". It also erases everything inside the buffers,
so make sure to do your "extract" before running the "reset" command.

The "reset" command also takes a "-b" option that lets you resize the
buffer as well. This is useful to free the allocated buffers when you
are finished tracing.

># trace-cmd reset -b 0
># cat /sys/kernel/debug/tracing/buffer_total_size_kb
8

The problem with the "reset" command is that it may make it hard to
use the debug file system tracing files directly. It may disable various
parts of tracing that may give unexpected results when trying to use
the files directly. If you plan to use ftrace's files directly after
using trace-cmd, the trick is to start the "nop" tracer.

># trace-cmd start -p nop

This sets up ftrace to run the "nop" tracer, which does no tracing and
has no overhead when enabled, and disables all events, and clears out
the "trace" file. After running this command, the system should be
set up to use the ftrace files directly as they are expected.

Using trace-cmd over the network

If the target system to trace is limited on disk space, or perhaps
the disk usage is what is being traced, it can be prudent to record

Det ailed Descript ion of Ft race

101

the trace via another median than to the hard drive. The "listen"
command sets up a way for trace-cmd to record over the network.

[Server]
>$ mkdir traces
>$ cd traces
>$ trace-cmd listen -p 55577

Notice that the prompt above is "$". This denotes that the listen command
does not need to be root if the listening port is not a privileged port.

[Target]
># trace-cmd record -e all -N Server:55577 ls /

[Server]
connected!
Connected with Target:50671
cpus=8
pagesize=4096
version = 6
CPU0 data recorded at offset=0x3a7000
 0 bytes in size
CPU1 data recorded at offset=0x3a7000
 8192 bytes in size
CPU2 data recorded at offset=0x3a9000
 8192 bytes in size
CPU3 data recorded at offset=0x3ab000
 8192 bytes in size
CPU4 data recorded at offset=0x3ad000
 8192 bytes in size
CPU5 data recorded at offset=0x3af000
 8192 bytes in size
CPU6 data recorded at offset=0x3b1000
 4096 bytes in size
CPU7 data recorded at offset=0x3b2000
 8192 bytes in size
connected!
(^C)

>$ ls
trace.Target:50671.dat
>$ trace-cmd report trace.Target:50671.dat
version = 6
CPU 0 is empty
cpus=8
 <...>-2976 [007] 8865.266143: mm_page_alloc:
page=0xffffea00007e8740 pfn=8292160 order=0 migratetype=0
gfp_flags=GFP_KERNEL|GFP_REPEAT|GFP_ZERO|GFP_NOTRACK
 <...>-2976 [007] 8865.266145: kmalloc:
(pte_lock_init+0x2c) call_site=ffffffff8116d78c ptr=0xffff880111e40d00
bytes_req=48 bytes_alloc=64 gfp_flags=GFP_KERNEL
 <...>-2976 [007] 8865.266152: mm_page_alloc:
page=0xffffea00034a50c0 pfn=55201984 order=0 migratetype=0
gfp_flags=GFP_KERNEL|GFP_REPEAT|GFP_ZERO|GFP_NOTRACK

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

102

 <...>-2976 [007] 8865.266153: kmalloc:
(pte_lock_init+0x2c) call_site=ffffffff8116d78c ptr=0xffff880111e40e40
bytes_req=48 bytes_alloc=64 gfp_flags=GFP_KERNEL
 <...>-2976 [007] 8865.266155: mm_page_alloc:
page=0xffffea000307d380 pfn=50844544 order=0 migratetype=2
gfp_flags=GFP_HIGHUSER_MOVABLE
 <...>-2976 [007] 8865.266167: mm_page_alloc:
page=0xffffea000323f900 pfn=52689152 order=0 migratetype=2
gfp_flags=GFP_HIGHUSER_MOVABLE
 <...>-2976 [007] 8865.266171: mm_page_alloc:
page=0xffffea00032cda80 pfn=53271168 order=0 migratetype=2
gfp_flags=GFP_HIGHUSER_MOVABLE
 <...>-2976 [007] 8865.266192: hrtimer_cancel:
hrtimer=0xffff88011ebccf40
 <idle>-0 [006] 8865.266193: hrtimer_cancel:
hrtimer=0xffff88011eb8cf40
 <...>-2976 [007] 8865.266193: hrtimer_expire_entry:
hrtimer=0xffff88011ebccf40 now=8905356001470 function=tick_sched_timer/0x0
 <idle>-0 [006] 8865.266194: hrtimer_expire_entry:
hrtimer=0xffff88011eb8cf40 now=8905356002620
function=tick_sched_timer/0x0
 <...>-2976 [007] 8865.266196: sched_stat_runtime:
comm=trace-cmd pid=2976 runtime=228684 [ns] vruntime=2941412131 [ns]
 <idle>-0 [006] 8865.266197: softirq_raise: vec=1
[action=TIMER]
 <idle>-0 [006] 8865.266197: rcu_utilization:
ffffffff819e740d
 <...>-2976 [007] 8865.266198: softirq_raise: vec=1
[action=TIMER]
 <idle>-0 [006] 8865.266198: softirq_raise: vec=9
[action=RCU]
 <...>-2976 [007] 8865.266199: rcu_utilization:
ffffffff819e740d

By default, the data is transfered via UDP. This is very efficient but
it is possible to lose data and not know it. If you are worried about
a full connection, then use the TCP protocol. The "-t" option
on the "record" command forces trace-cmd to send the data over a TCP
connection instead of a UDP one.

Summary

This document just highlighted the most common features of ftrace and
trace-cmd. For more in depth look at what trace-cmd can do, read
the man pages:

 trace-cmd
 trace-cmd-record
 trace-cmd-report
 trace-cmd-start
 trace-cmd-stop
 trace-cmd-extract
 trace-cmd-reset

Det ailed Descript ion of Ft race

103

 trace-cmd-listen
 trace-cmd-split
 trace-cmd-restore
 trace-cmd-list
 trace-cmd-stack

Red Hat Ent erprise Linux for Real T ime 7 T uning Guide

104

Revision History

Revision 1-0 Fri Feb 13 2015 Radek Bíba
Version for 7.1 GA release.

Revision Hist ory

105

	Table of Contents
	Preface
	Chapter 1. Before You Start Tuning Your Red Hat Enterprise Linux for Real Time System
	Chapter 2. General System Tuning
	2.1. Using the Tuna Interface
	2.2. Setting Persistent Tuning Parameters
	2.3. Setting BIOS Parameters
	2.4. Interrupt and Process Binding
	2.5. File System Determinism Tips
	2.6. Using Hardware Clocks for System Timestamping
	2.7. Avoid Running Extra Applications
	2.8. Swapping and Out of Memory Tips
	2.9. Network Determinism Tips
	2.10. syslog Tuning Tips
	2.11. The PC Card Daemon
	2.12. Reduce TCP Performance Spikes

	Chapter 3. Realtime-Specific Tuning
	3.1. Setting Scheduler Priorities
	3.2. Using kdump and kexec with the Red Hat Enterprise Linux for Real Time Kernel
	3.3. TSC Timer Synchronization on Opteron CPUs
	3.4. Infiniband
	3.5. RoCEE and High Performance Networking
	3.6. Non-Uniform Memory Access
	3.7. Reducing the TCP Delayed Ack Timeout
	3.8. Using debugfs
	3.9. Using the ftrace Utility for Tracing Latencies
	3.10. Latency Tracing Using trace-cmd
	3.11. Using sched_nr_migrate to Limit SCHED_OTHER Task Migration.
	3.12. Real Time Throttling

	Chapter 4. Application Tuning and Deployment
	4.1. Signal Processing in Realtime Applications
	4.2. Using sched_yield and Other Synchronization Mechanisms
	4.3. Mutex Options
	4.4. TCP_NODELAY and Small Buffer Writes
	4.5. Setting Realtime Scheduler Priorities
	4.6. Loading Dynamic Libraries
	4.7. Using _COARSE POSIX Clocks for Application Timestamping
	4.8. About Perf

	Chapter 5. More Information
	5.1. Reporting Bugs

	Event Tracing
	Detailed Description of Ftrace
	Revision History

