
Lana Brindley Alison Young Cheryn Tan

Red Hat Enterprise MRG 2
Tuna User Guide

Using Tuna to perform advanced tuning procedures for the MRG Realtime
component of the Red Hat Enterprise MRG distributed computing
platform

Red Hat Enterprise MRG 2 Tuna User Guide

Using Tuna to perform advanced tuning procedures for the MRG Realtime
component of the Red Hat Enterprise MRG distributed computing
platform

Lana Brindley
Red Hat Engineering Cont ent Services

Alison Young
Red Hat Engineering Cont ent Services

Cheryn Tan
Red Hat Engineering Cont ent Services
cherynt an@redhat .com

Legal Notice
Copyright 2013 Red Hat, Inc. The text of and illustrations in this document are licensed by Red Hat under
a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-
BY-SA is available at . In accordance with CC-BY-SA, if you distribute this document or an adaptation of
it, you must provide the URL for the original version. Red Hat, as the licensor of this document, waives the
right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by
applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the
Infinity Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries. Linux is the registered trademark of Linus Torvalds in the United States and other countries.
Java is a registered trademark of Oracle and/or its aff iliates. XFS is a trademark of Silicon Graphics
International Corp. or its subsidiaries in the United States and/or other countries. MySQL is a registered
trademark of MySQL AB in the United States, the European Union and other countries. All other
trademarks are the property of their respective owners. 1801 Varsity Drive Raleigh, NC 27606-2072 USA
Phone: +1 919 754 3700 Phone: 888 733 4281 Fax: +1 919 754 3701

Keywords

Abstract
This book contains information on using the Tuna program to perform advanced tuning procedures for
the MRG Realtime component of the Red Hat Enterprise MRG distributed computing platform. For more
information on tuning, see the MRG Realtime Tuning Guide.

4
4
4
5
6
6
6
7

. .

8. .

9
9

10
10
12
13
14

. .

15
16
17
17
18
18
20

. .

21
21
23

. .

25. .

26
26
26

. .

27. .

Table of Contents

Preface
1. Document Conventions

1.1. Typographic Conventions
1.2. Pull-quote Conventions
1.3. Notes and Warnings

2. Getting Help and Giving Feedback
2.1. Do You Need Help?
2.2. We Need Feedback!

Chapter 1. Installing Tuna

Chapter 2. Using the Graphical User Interface
2.1. Reviewing the System
2.2. CPU Tuning
2.3. IRQ Tuning
2.4. Task Tuning
2.5. Examples for Using Tuna with the Graphical User Interface
2.6. Saving Changes

Chapter 3. Using the Command Line Interface
3.1. Reviewing the System
3.2. CPU Tuning
3.3. IRQ Tuning
3.4. Task Tuning
3.5. Examples for Using Tuna with the Command Line Interface
3.6. Saving Changes

Chapter 4 . Using Testing Tools with Tuna
4.1. Cyclictest
4.2. Oscilloscope

Chapter 5. Frequently Asked Questions

Chapter 6. More Information
6.1. Reporting Bugs
6.2. Further Reading

Revision History

Red Hat Enterprise MRG 2 Tuna User Guide

6

Preface

7

Preface
Red Hat Enterprise MRG

This book contains basic installation and usage information for Tuna. Tuna was developed for tuning
the MRG Realtime component of Red Hat Enterprise MRG, but can also be used to tune standard Red
Hat Enterprise Linux systems. Red Hat Enterprise MRG is a high performance distributed computing
platform consisting of three components:

1. Messaging — Cross platform, high performance, reliable messaging using the Advanced
Message Queuing Protocol (AMQP) standard.

2. Realtime — Consistent low-latency and predictable response times for applications that require
microsecond latency.

3. Grid — Distributed High Throughput (HTC) and High Performance Computing (HPC).

All three components of Red Hat Enterprise MRG are designed to be used as part of the platform, but
can also be used separately.

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not, alternative
but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes the
Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keys and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current working
directory, enter the cat my_next_bestselling_novel command at the shell prompt
and press Enter to execute the command.

The above includes a file name, a shell command and a key, all presented in mono-spaced bold and all
distinguishable thanks to context.

Key combinations can be distinguished from an individual key by the plus sign that connects each part of
a key combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to a virtual terminal.

The first example highlights a particular key to press. The second example highlights a key combination:
a set of three keys pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values

Red Hat Enterprise MRG 2 Tuna User Guide

8

https://fedorahosted.org/liberation-fonts/

mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System → Preferences → Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories →
Character Map from the main menu bar. Next, choose Search → Find… from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-click
this highlighted character to place it in the Text to copy field and then click the Copy
button. Now switch back to your document and choose Edit → Paste from the gedit menu
bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and all
distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or variable
text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at a shell
prompt. If the remote machine is example.com and your username on that machine is
john, type ssh john@example.com .

The mount -o remount file-system command remounts the named file system. For
example, to remount the /home file system, the command is mount -o remount /home.

To see the version of a currently installed package, use the rpm -q package command. It
will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Chapter 2. Using the Graphical User Interface

9

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to the
current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. Getting Help and Giving Feedback

2.1. Do You Need Help?

Red Hat Enterprise MRG 2 Tuna User Guide

10

If you experience difficulty with a procedure described in this documentation, visit the Red Hat Customer
Portal at http://access.redhat.com. Through the customer portal, you can:

search or browse through a knowledgebase of technical support articles about Red Hat products.

submit a support case to Red Hat Global Support Services (GSS).

access other product documentation.

Red Hat also hosts a large number of electronic mailing lists for discussion of Red Hat software and
technology. You can find a list of publicly available mailing lists at https://www.redhat.com/mailman/listinfo.
Click on the name of any mailing list to subscribe to that list or to access the list archives.

2.2. We Need Feedback!
If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/
against the product Red Hat Enterprise MRG.

When submitting a bug report, be sure to mention the manual's identifier: Tuna_User_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the surrounding
text so we can find it easily.

Chapter 2. Using the Graphical User Interface

11

http://access.redhat.com
https://www.redhat.com/mailman/listinfo
http://bugzilla.redhat.com/

Chapter 1. Installing Tuna
Tuna is a tool that can be used to adjust scheduler tunables such as scheduler policy, RT priority and
CPU affinity. It also allows the user to see the results of these changes.

Threads and IRQ handlers can be tuned. It is also possible to isolate CPU cores and sockets, moving all
threads away from them so that a new, more important set of threads can run exclusively.

Tuna provides a graphical user interface (GUI). The GUI displays the CPU topology on one screen,
which helps identify problems. It also allows changes to made to running threads, and see the results of
those changes immediately. Most Tuna operations can be performed on either the command line, or in
the GUI.

Tuna is currently only available through the MRG Realtime channels on the Red Hat Network (RHN).

Procedure 1.1. Download and Install Tuna

1. To install Tuna you need to register your system with Red Hat Network, and subscribe to the MRG
Realtime v. 2 (for RHEL 6 Server x86_64) channel.

2. Tuna requires the following packages:

python-linux-procfs

python-schedutils

python-ethtool

To use the graphical user interface, the following packages are also required:

pygtk2

pygtk2-libglade

3. Once you have registered your system with Red Hat Network, and subscribed to the appropriate
channel, Tuna can be installed using the yum command. This will install all the necessary
dependencies:

yum install tuna

4. Although Tuna can be run as an unprivileged user, not all processes will be available for
configuration. For this reason, in most cases you will need to run Tuna as the root user:

tuna

With the appropriate privileges, Tuna could also be run with the sudo command:

$ sudo tuna

Red Hat Enterprise MRG 2 Tuna User Guide

12

https://rhn.redhat.com/rhn/software/channels/All.do
https://rhn.redhat.com/rhn/software/channels/All.do

Chapter 2. Using the Graphical User Interface
Tuna can be used either from the command line interface, or the graphical user interface (GUI). Both
provide the same range of functionality. This chapter covers the graphical user interface.

2.1. Reviewing the System
The main Tuna screen shows the current state of the system.

Figure 2.1. Tuna User Interface

The main Tuna window is divided into three sections, for CPU, IRQ, and process information. The
sections are divided by grab bars for adjustment. The window itself can also be resized. As values in
each of the sections change, the entries are shown in bold.

 The CPU list shows all online CPUs and their current usage.

The checkbox beside the name of the CPU is used to filter the task list at the bottom of the window.
Only tasks and IRQs that belong to checked CPUs will be displayed.

 The IRQ list shows all active interrupt requests (IRQs), their affinity, events and user information.

 The task list shows all running tasks.

When a process is threaded, the task list shows the parent thread with all the children threads
collapsed below it. Click on the arrow to the left of the process to expand the thread.

The task list has a right-click menu. Select Hide kernel threads to hide all kernel threads, and see

Chapter 2. Using the Graphical User Interface

13

only user threads. Click Hide kernel threads again to restore the kernel threads. Similarly, Hide
user threads will hide all user threads and show only kernel threads. Clicking Hide user threads
again will restore the user threads.

2.2. CPU Tuning
CPU tuning in Tuna enables the system to determine which tasks and processes run on selected CPUs.
For instance, isolating a CPU removes the CPU from SMP load balancing algorithms, which prevents
tasks from being assigned to or removed from the CPU, avoiding service interrupts. Having high priority
tasks running on a dedicated, isolated CPU can improve the average latency of the tasks.

Procedure 2.1. CPU Tuning in the GUI

1. On the CPU list at the top left corner of the Tuna main window, select the desired CPU.

Figure 2.2. Tuna CPU List

2. The CPU list shows current information about each active CPU. Three actions are available:

To isolate a CPU, right click on the selected CPU, and select Isolate CPU from the menu. This
will cause all tasks currently running on that CPU to move to the next available CPU. This is
achieved through removing the selected CPU from the current affinity mask of all threads, so
that they no longer see that CPU as being available.

To include a CPU, right click on the selected CPU, and select Include CPU from the menu.
This will allow tasks to run on that CPU.

To restore a CPU, right click on the selected CPU, and select Restore CPU from the menu.
This will restore that CPU to its previous configuration.

2.3. IRQ Tuning
An interrupt request (IRQ) is a request for service sent at the hardware level to the processor. It
temporarily stops a running process, and allows the device which sent the interrupt signal to run instead.
The policy, priority and affinity settings of an interrupt determine on which processor the interrupt runs.

Procedure 2.2. IRQ Tuning in the GUI

1. On the IRQ list at the top right corner of the Tuna main window, right click on an IRQ and select
Set IRQ Attributes to open the Set IRQ Attributes dialog box.

Red Hat Enterprise MRG 2 Tuna User Guide

14

Figure 2.3. Set IRQ Attributes window

2. The Set IRQ Attributes dialog shows current information about the IRQ. It has three
adjustable attributes:

a. Policy

A drop down list of the available scheduler policies.

SCHED_OTHER is the default policy. SCHED_FIFO is a first in/first out realtime policy. A
SCHED_FIFO policy with a priority of 1 will always run ahead of SCHED_OTHER. SCHED_RR
is a policy where threads of equal priority are treated in a round-robin fashion.

b. Scheduler priority

A drop down list of the available priorities. This attribute will be disabled if the selected IRQ
cannot have a set priority.

Scheduler priorities range from 99 (highest) to 1 (lowest). Priorities can be set for threads
that use the SCHED_FIFO or SCHED_RR policies.

c. Affinity

A numeric list of CPUs on which the IRQ can be run. This entry can be in the form of a
comma-delimited list of CPU numbers, a range separated by a hyphen, or a combination of
both. For example: 0, 2-4, 7, 8. This would instruct the IRQ to run on CPUs 0, 2, 3, 4, 7
and 8.

This field will also accept hex masks. Hex masks must be preceded by Ox in order to be
recognized and interpreted correctly. Hex masks that do not use that format will be
interpreted as a decimal CPU number.

Chapter 3. Using the Command Line Interface

15

Note

See the MRG Realtime Reference Guide for more information on policy, priority, and affinity.

Note

Moving IRQs and threads by specifying the CPUs they are to run on can be time consuming and
difficult. Tuna also offers the ability to select threads and IRQs, and drag and drop them over the
desired CPUs. This method can make changing the topology much easier.

2.4. Task Tuning
Threads or individual tasks, like interrupts, can be manipulated by setting the affinity, scheduling priority
and policies. These attributes determine on which processor the thread or task will run. By manipulating
interrupts and threads off and on to processors, you acquire greater control over scheduling and
priorities and, subsequently, latency and determinism.

Procedure 2.3. Task Tuning in the GUI

1. On the task list of the Tuna main window, right click on a task and select Set Process
Attributes to open the Process Attributes dialog box.

Figure 2.4 . Set Process Attributes window

Red Hat Enterprise MRG 2 Tuna User Guide

16

2. The Process Attributes dialog shows current information about the task. It allows you to set
scheduling policy, scheduler priority, and CPU affinity for a task or set of tasks.

a. Thread Selection

Just the selected thread is selected by default. If the task has more than one
thread, use All threads of the selected process to make changes to all of the
threads for that task. To use a regular expression (regex) to search for tasks, select All
command lines matching the regex below:. This will activate the Command
line regex: field and you can enter the regex. This field supports the * and ? wildcards,
and will match the entire command line. The task list will update to show only those tasks
that match the regex.

b. Policy, Priority and Affinity

The Policy drop down box contains the available scheduling policy options.

The Scheduler Priority numeric up down field contains the available priorities. This
attribute will be disabled if the selected tasks cannot have a set priority.

The Affinity field contains a numeric list of CPUs on which the selected tasks can be
run. This entry can be in the form of a comma-delimited list of CPU numbers, a range using
square brackets, or a combination of both.

c. Task List

This shows a list of the tasks currently being adjusted based on the thread and regex
selections made.

2.5. Examples for Using Tuna with the Graphical User Interface
Example 2.1. Using Tuna with the Graphical User Interface

This example uses a system with four or more processors. Two applications need to be run - Foo
and Bar. The applications need to be run on dedicated processors - processor 0 for Foo and
processor 1 for Bar.

1. Move everything off the chosen processors. Right-click on CPU 0 in the CPU list and select
Isolate CPU from the menu. Repeat for CPU 1. The task list shows that no tasks are
running on those processors.

2. Foo is a single task with several threads. The task and all its threads need to run on CPU 0.
Find Foo in the task list, right-click on it and choose Set process attributes from the
menu. In the Set Process Attributes dialog, select the radio button for All threads of
the selected process. In the Affinity text box, change the text to 0. The scheduling
policy and scheduler priority can also be adjusted if required. Click on OK to save the changes
and close the dialog box.

3. Bar is an application that has --none as its first command line argument. Right-click anywhere
in the task list and choose Set process attributes from the menu. In the dialog, select the
radio-button for All command lines matching the regex below:. Type bar --
none * in the Command line regex text box. The task list in the dialog box will update to
include the matching processes and any associated threads. Change the Affinity to 1.
Make any changes for the scheduler and priority. Click on OK to save your changes and close
the dialog box.

Chapter 3. Using the Command Line Interface

17

2.6. Saving Changes
Procedure 2.4 . Saving Changes in the GUI

1. Right-click in the Tuna GUI, and select the Save kthreads tunings menu item.

2. Tuna will prompt for a filename and directory. Enter a filename and select the location to save the
file. Select OK to save your changes and close the dialog box.

Figure 2.5. Save kthreads tunings window

Important

This method will not save every option that can be changed with Tuna. This will save the kernel
thread changes only. Any processes that are not currently running when they are changed will
not be saved.

Red Hat Enterprise MRG 2 Tuna User Guide

18

Chapter 3. Using the Command Line Interface
Tuna can be used either from the command line interface, or the graphical interface. Both provide the
same range of functionality. This chapter covers the command line interface.

Use the --help option to see all the available options:

tuna --help
Usage: tuna [OPTIONS]
 -h, --help Give this help list
 -g, --gui Start the GUI
 -c, --cpus=CPU-LIST CPU-LIST affected by commands
 -C, --affect_children Operation will affect children
threads
 -f, --filter Display filter the selected
entities
 -i, --isolate Move all threads away from CPU-
LIST
 -I, --include Allow all threads to run on CPU-
LIST
 -K, --no_kthreads Operations will not affect kernel
threads
 -m, --move Move selected entities to CPU-
LIST
 -p, --priority=[POLICY]:RTPRIO Set thread scheduler tunables:
POLICY and RTPRIO
 -P, --show_threads Show thread list
 -Q, --show_irqs Show IRQ list
 -q, --irqs=IRQ-LIST IRQ-LIST affected by commands
 -s, --save=FILENAME Save kthreads sched tunables to
FILENAME
 -S, --sockets=CPU-SOCKET-LIST CPU-SOCKET-LIST affected by
commands
 -t, --threads=THREAD-LIST THREAD-LIST affected by commands
 -U, --no_uthreads Operations will not affect user
threads
 -v, --version Show version
 -W, --what_is Provides help about selected
entities
 -x, --spread Spread selected entities over
CPU-LIST

When passing commands to Tuna using the command line, it is possible to pass multiple commands in
one line and Tuna will process the commands sequentially:

tuna --socket 0 --isolate \
 --thread my_real_time_app --move \
 --irq serial --socket 1 --move \
 --irq eth* --socket 2 --spread \
 --show_threads --show_irqs

The above command will distribute load across a four socket system. Commands such as this can be
added to the initialization scripts of applications to serve as a configuration command.

Chapter 3. Using the Command Line Interface

19

Table 3.1. Tuna Options

Tuna Options

--help Display the help list.

--gui Start the graphical user interface.

--cpus=CPU-LIST The CPUs to be controlled by Tuna. The list will
remain in effect until a new list is specified.

--affect_children Operation will affect children threads as well as
the parent threads.

--filter Filter the display to only show the affected
entities.

--isolate CPU-LIST Move all threads away from the specified CPUs.

--include CPU-LIST Allow all threads to run on the specified CPUs.

--no_kthreads Operation will not affect kernel threads.

--move Move selected entities to the specified CPUs.

--priority=[POLICY]:RTPRIO Set the thread to have the specified scheduler
policy and priority.

--show_threads Show the thread list.

--show_irqs Show the IRQ list.

--irqs IRQ-LIST Specify the list of IRQs that are to be affected by
commands. The list will remain in effect until a
new list is specified. IRQs can be added to the list
by using + and removed from the list by using -.

--save FILENAME Save the kernel threads schedules to a file called
FILENAME.

--sockets=CPU-SOCKET-LIST The CPU sockets to be controlled by Tuna. This
option takes into account the CPU topology, such
as the cores that share a single processor cache,
and that are on the same physical chip.

--threads=THREAD-LIST The threads to be controlled by Tuna. The list will
remain in effect until a new list is specified.
Threads can be added to the list by using + and
removed from the list by using -.

--no_uthreads Operation will not affect user threads.

--version Show the current version of the Tuna package.

--what_is To see further help on selected entities.

--spread Spread the specified threads evenly between the
selected CPUs.

3.1. Reviewing the System
Tuna can show what is happening currently on the system, before changes are made.

Procedure 3.1. Reviewing the System in the CLI

1. Use the --show_threads command to view the current policies and priorities:

Red Hat Enterprise MRG 2 Tuna User Guide

20

tuna --show_threads
 thread
pid SCHED_ rtpri affinity cmd
1 OTHER 0 0,1 init
2 FIFO 99 0 migration/0
3 OTHER 0 0 ksoftirqd/0
4 FIFO 99 0 watchdog/0

2. Use the --show_irqs command to view the current interrupts and their affinity:

tuna --show_irqs
users affinity
0 timer 0
1 i8042 0
7 parport0 0

3.2. CPU Tuning
CPU tuning in Tuna enables the system to determine which tasks and processes run on selected CPUs.
For instance, isolating a CPU removes the CPU from SMP load balancing algorithms, which prevents
tasks from being assigned to or removed from the CPU, avoiding service interrupts. Having high priority
tasks running on a dedicated, isolated CPU can improve the average latency of the tasks.

Procedure 3.2. CPU Tuning in the CLI

To tune CPUs on the command line in Tuna, first specify the list of CPUs to be affected, and then give
the action to be performed.

1. Specify the list of CPUs to be affected by the command:

tuna --cpus=CPU-LIST --COMMAND

2. To isolate a CPU:

tuna --cpus=CPU-LIST --isolate

This command will cause all tasks currently running on that CPU to move to the next available
CPU.

3. To include a CPU:

tuna --cpus=CPU-LIST --include

This command will allow threads to run on the specified CPU.

3.3. IRQ Tuning
An interrupt request (IRQ) is a request for service sent at the hardware level to the processor. It
temporarily stops a running process, and allows the device which sent the interrupt signal to run instead.
The policy, priority and affinity settings of an interrupt determine on which processor the interrupt runs.

Procedure 3.3. IRQ Tuning in the CLI

1. Specify the list of IRQs to be affected by the command:

Chapter 4. Using Testing Tools with Tuna

21

tuna --irqs=IRQ-LIST --COMMAND

2. To move an interrupt to a specified CPU, run the following command:

tuna --irqs=IRQ-LIST --cpus=CPU --move

3.4. Task Tuning
Procedure 3.4 . Task Tuning in the CLI

1. To change policy and priority information on threads, use the --priority=[POLICY]:RTPRIO
command, where POLICY is the new policy and RTPRIO is the new priority:

tuna --threads 7861 --priority=RR:40

Policy can be either RR for round-robin, FIFO for first in/first out, or OTHER for the default policy.

Priority is a number between 1 (lowest priority) and 99 (highest priority).

For more information on scheduler policy and priority, see the MRG Realtime Reference Guide.

2. Use the --show_threads command to check the changes:

tuna --threads 7861 --show_threads

pid SCHED_ rtpri affinity voluntary nonvoluntary cmd
7861 RR 40 0xff 33318 16957 IRQ-4 serial

3.5. Examples for Using Tuna with the Command Line Interface
Threads or individual tasks, like interrupts, can be manipulated by setting the affinity, scheduling priority
and policies. These attributes determine on which processor the thread or task will run. By manipulating
interrupts and threads off and on to processors, you acquire greater control over scheduling and
priorities and, subsequently, latency and determinism.

Red Hat Enterprise MRG 2 Tuna User Guide

22

Example 3.1. Using Tuna with the Command Line Interface

This example uses a system with four or more processors. All ssh threads need to run on CPUs 0
and 1. All http threads need to run on CPUs 2 and 3.

tuna --cpus=0,1 --threads=ssh* --move --cpus=2,3 --threads=http* --move

This command will:

1. Select CPUs 0 and 1.

2. Select all threads that begin with ssh.

3. Move the selected threads to the selected CPUs. Tuna does this by setting the affinity mask of
threads starting with ssh to the appropriate CPUs. The CPUs can be expressed numerically as
0 and 1; hex mask as 0x03; binary as 11.

4. Reset the CPU list to 2 and 3.

5. Select all threads that begin with http.

6. Move the selected threads to the selected CPUs. Tuna does this by setting the affinity mask of
threads starting with http to the appropriate CPUs. The CPUs can be expressed numerically
as 2 and 3; hex mask as 0xC; binary as 1100.

Chapter 4. Using Testing Tools with Tuna

23

Example 3.2. Using the show_threads Command to View the Current Configurations

This example uses the show_threads command to display the current configuration, and test if the
requested changes have worked as expected.

tuna -t gnome-sc* -P -c0 -mP -c1 -mP -c+0 -mP
 thread ctxt_switches
 pid SCHED_ rtpri affinity voluntary nonvoluntary cmd
 3861 OTHER 0 0,1 33997 58 gnome-screensav
 thread ctxt_switches
 pid SCHED_ rtpri affinity voluntary nonvoluntary cmd
 3861 OTHER 0 0 33997 58 gnome-screensav
 thread ctxt_switches
 pid SCHED_ rtpri affinity voluntary nonvoluntary cmd
 3861 OTHER 0 1 33997 58 gnome-screensav
 thread ctxt_switches
 pid SCHED_ rtpri affinity voluntary nonvoluntary cmd
 3861 OTHER 0 0,1 33997 58 gnome-screensav

This command will:

1. Select all threads that begin with gnome-sc.

2. Show the selected threads, to check their affinity mask and RT priority.

3. Select CPU 0.

4. Move the gnome-sc threads to the selected CPU (CPU 0).

5. Show the result of the move.

6. Reset the CPU list to CPU 1.

7. Move the gnome-sc threads to the selected CPU (CPU 1).

8. Show the result of the move.

9. Add CPU 0 to the CPU list.

10. Move the gnome-sc threads to the selected CPUs (CPUs 0 and 1).

11. Show the result of the move.

3.6. Saving Changes
Procedure 3.5. Saving Changes in the CLI

Use the --save or -s parameter with a descriptive filename to save the current configuration:

tuna --save=FILENAME

Important

This method will not save every option that can be changed with Tuna. This will save the kernel
thread changes only. Any processes that are not currently running when they are changed will
not be saved.

Red Hat Enterprise MRG 2 Tuna User Guide

24

Chapter 4. Using Testing Tools with Tuna
Tuna's functionality is enhanced and expanded by the addition of several testing tools. The most
important of these is Cyclictest, which is designed specifically to locate and identify latencies in a real-
time system. Oscilloscope uses data provided to it and presents it in graph form. By feeding data to the
oscilloscope from Cyclictest, it graphically displays latencies as they occur.

Cyclictest is available in the rt-tests package. Ensure you are registered with the Red Hat Network,
and subscribed to the appropriate MRG Realtime channel. See Chapter 1, Installing Tuna. The package
can then be installed using the following command:

yum install rt-tests

The oscilloscope is available in the oscilloscope package. It requires the following dependencies:

pygtk2

python-matplotlib

python-numeric

yum install oscilloscope

4.1. Cyclictest
Cyclictest is used to measure the maximum latency of certain events over time. Ideally, the tool would be
run over a period of time, under a variety of different stress levels, to determine where the highest
latencies lie.

Use the --help option to see all the available options:

Chapter 5. Frequently Asked Questions

25

cyclictest --help
cyclictest V 0.66
Usage:
cyclictest <options>

-a [NUM] --affinity run thread #N on processor #N, if possible
 with NUM pin all threads to the processor NUM
-b USEC --breaktrace=USEC send break trace command when latency > USEC
-B --preemptirqs both preempt and irqsoff tracing (used with -b)
-c CLOCK --clock=CLOCK select clock
 0 = CLOCK_MONOTONIC (default)
 1 = CLOCK_REALTIME
-C --context context switch tracing (used with -b)
-d DIST --distance=DIST distance of thread intervals in us default=500
-D --duration=t specify a length for the test run
 default is in seconds, but 'm', 'h', or 'd' maybe added
 to modify value to minutes, hours or days
-E --event event tracing (used with -b)
-f --ftrace function trace (when -b is active)
-h --histogram=US dump a latency histogram to stdout after the run
 (with same priority about many threads)
 US is the max time to be be tracked in microseconds
-i INTV --interval=INTV base interval of thread in us default=1000
-I --irqsoff Irqsoff tracing (used with -b)
-l LOOPS --loops=LOOPS number of loops: default=0(endless)
-m --mlockall lock current and future memory allocations
-M --refresh_on_max delay updating the screen until a new max latency is
hit
-n --nanosleep use clock_nanosleep
-N --nsecs print results in ns instead of us (default us)
-o RED --oscope=RED oscilloscope mode, reduce verbose output by RED
-O TOPT --traceopt=TOPT trace option
-p PRIO --prio=PRIO priority of highest prio thread
-P --preemptoff Preempt off tracing (used with -b)
-q --quiet print only a summary on exit
-r --relative use relative timer instead of absolute
-s --system use sys_nanosleep and sys_setitimer
-t --threads one thread per available processor
-t [NUM] --threads=NUM number of threads:
 without NUM, threads = max_cpus
 without -t default = 1
-T TRACE --tracer=TRACER set tracing function
 configured tracers: unavailable (debugfs not mounted)
-u --unbuffered force unbuffered output for live processing
-v --verbose output values on stdout for statistics
 format: n:c:v n=tasknum c=count v=value in us
-w --wakeup task wakeup tracing (used with -b)
-W --wakeuprt rt task wakeup tracing (used with -b)
-y POLI --policy=POLI policy of realtime thread (1:FIFO, 2:RR)
 format: --policy=fifo(default) or --policy=rr
-S --smp Standard SMP testing (equals -a -t -n -m -d0)
 same priority on all threads.
-U --numa Standard NUMA testing (similar to SMP option)
 thread data structures allocated from local node

1. Cyclictest must be run as the root user. Running cyclictest without any parameters will create one
test thread with a 1ms interval:

Red Hat Enterprise MRG 2 Tuna User Guide

26

cyclictest
policy: other: loadavg: 0.07 0.19 0.29 3/260 27939

T: 0 (27939) P: 0 I:1000 C: 3279 Min: 1538 Act:1059544 Avg:881375 Max:
1059876

The final column displays the maximum latency.

2. Use the following command to run one test thread per CPU:

cyclictest --smp -p75 -m
policy: fifo: loadavg: 0.01 0.05 0.08 1/338 30074

T: 0 (30073) P:75 I:1000 C: 821 Min: 6 Act: 39 Avg: 22 Max:
44
T: 1 (30074) P:75 I:1500 C: 542 Min: 7 Act: 64 Avg: 48 Max:
73

3. Use this command on a NUMA system (an AMD system with more than one memory node):

cyclictest --numa -p75 -m
policy: fifo: loadavg: 0.00 0.00 0.00 1/173 25319

T: 0 (25318) P:75 I:1000 C: 2046 Min: 7 Act: 9 Avg: 8 Max:
12
T: 1 (25319) P:75 I:1500 C: 1363 Min: 8 Act: 10 Avg: 9 Max:
24

4.2. Oscilloscope
The oscilloscope uses the data produced by cyclictest and pipes it to a continuously updated graph.

1. Start cyclictest with the -v (verbose) parameter. Then use a | (pipe) to send the output to the
oscilloscope:

cyclictest -t1 -n -p99 -v | oscilloscope >/dev/null

Revision History

27

Figure 4 .1. Oscilloscope output

2. Use the keyboard controls listed in the help section of the oscilloscope to control the output:

Space: Pause the feed, and display a static graph

S: Create a snapshot of the graph. The image will be saved as a PNG in the current directory.

R: Reset the oscilloscope

Q: Quit the program

Red Hat Enterprise MRG 2 Tuna User Guide

28

Q:

A:

Q:

A:

Chapter 5. Frequently Asked Questions
How can I save my configuration for threads other than kernel threads?

The command line interface can be used to add a series of operations to the startup script of any
program. Develop the series of commands for Tuna to run at startup, and pass it to the program
as a single command. Threads created after the initial command will inherit the affinity and
scheduling policy of the thread that creates it. For an example of an appropriate startup script, see
Chapter 3, Using the Command Line Interface.

Can Tuna handle multiple sockets and multiple cores?

Figure 5.1. Tuna window for a system with multiple sockets and cores

Tuna supports multiple sockets and sockets with multiple cores. If there are multiple cores on a
socket, they will often share the cache on that socket.

The Tuna interface groups multiple sockets within a frame, so that operations can be done on
whole sockets or on specific cores.

Revision History

29

Chapter 6. More Information

6.1. Reporting Bugs
If you have determined that the bug is specific to MRG Realtime follow these instructions to enter a bug
report:

1. Create a Bugzilla account.

2. Log in and click on Enter A New Bug Report.

3. You will need to identify the product the bug occurs in. MRG Realtime appears under Red Hat
Enterprise MRG in the Red Hat products list. It is important that you choose the correct product
that the bug occurs in.

4. Continue to enter the bug information by designating the appropriate component and giving a
detailed problem description. When entering the problem description be sure to include details of
whether you were able to reproduce the problem on the standard Red Hat Enterprise Linux 6 or
the supplied vanilla kernel.

6.2. Further Reading
Red Hat Enterprise MRG and MRG Realt ime Product Information

http://www.redhat.com/mrg

MRG Realt ime and other Red Hat Enterprise MRG manuals
https://access.redhat.com/knowledge/docs/Red_Hat_Enterprise_MRG/

Red Hat Knowledgebase
https://access.redhat.com/knowledge/search

Red Hat Enterprise MRG 2 Tuna User Guide

30

https://bugzilla.redhat.com/createaccount.cgi
https://bugzilla.redhat.com/enter_bug.cgi
http://www.redhat.com/mrg
https://access.redhat.com/knowledge/docs/Red_Hat_Enterprise_MRG/
https://access.redhat.com/knowledge/search

Revision History
Revision 3-1 Tue Feb 26 2013 Cheryn Tan

Prepared for publishing - MRG 2.3.

Revision 3-0 Wed Dec 5 2012 Cheryn Tan
Docs QE review fixes.

Revision 2-1 Tue Feb 28 2012 Tim Hildred
Updated configuration file for new publication tool.

Revision 2-0 Wed Dec 7 2011 Alison Young
Prepared for publishing

Revision 1-2 Wed Nov 16 2011 Alison Young
BZ#752406 - change RHEL versions

Revision 1-1 Thu Sep 22 2011 Alison Young
Version numbering change

Revision 1-0 Thu Jun 23 2011 Alison Young
Prepared for publishing

Revision 0.1-1 Wed Feb 23 2011 Alison Young
Minor XML updates

Revision 0.1-0 Wed Feb 23 2011 Alison Young
Fork from 1.3

Revision History

31

	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. Getting Help and Giving Feedback
	2.1. Do You Need Help?
	2.2. We Need Feedback!

	Chapter 1. Installing Tuna
	Chapter 2. Using the Graphical User Interface
	2.1. Reviewing the System
	2.2. CPU Tuning
	2.3. IRQ Tuning
	2.4. Task Tuning
	2.5. Examples for Using Tuna with the Graphical User Interface
	2.6. Saving Changes

	Chapter 3. Using the Command Line Interface
	3.1. Reviewing the System
	3.2. CPU Tuning
	3.3. IRQ Tuning
	3.4. Task Tuning
	3.5. Examples for Using Tuna with the Command Line Interface
	3.6. Saving Changes

	Chapter 4. Using Testing Tools with Tuna
	4.1. Cyclictest
	4.2. Oscilloscope

	Chapter 5. Frequently Asked Questions
	Chapter 6. More Information
	6.1. Reporting Bugs
	6.2. Further Reading

	Revision History

