
Red Hat Enterprise MRG 2
Grid Developer Guide

Developer-focused information for the Grid component of Red Hat
Enterprise MRG

Edition 3

David Ryan
Red Hat Engineering Content Services

Cheryn Tan
Red Hat Engineering Content Services

cheryntan@redhat.com

Alison Young
Red Hat Engineering Content Services

Red Hat Enterprise MRG 2 Grid Developer Guide 1

mailto:cheryntan@redhat.com

Legal Notice
Copyright © 2012 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at
http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this
document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section
4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo,
and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other
countries.

All other trademarks are the property of their respective owners.

1801 Varsity Drive
Raleigh, NC 27606-2072 USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701

2 Legal Notice

http://creativecommons.org/licenses/by-sa/3.0/

Abstract
This book contains information on Aviary, an interface for MRG Grid job submission, management and
queries. It is targeted at developers who are getting started with MRG Grid.

Red Hat Enterprise MRG 2 Grid Developer Guide 3

Table of Contents
Preface

1. Document Conventions
1.1. Typographic Conventions
1.2. Pull-quote Conventions
1.3. Notes and Warnings

2. Getting Help and Giving Feedback
2.1. Do You Need Help?
2.2. We Need Feedback!

1. Overview

2. API Types
2.1. SOAP and WSDL
2.2. Aviary Model

3. Aviary Installation and Configuration
3.1. Installation
3.2. Configuration

4. Aviary Core Types
4.1. JobId
4.2. SubmissionId
4.3. Attribute
4.4. JobStatus
4.5. ResourceConstraint
4.6. ResourceID

5. Aviary Locator

6. Job Submission and Management
6.1. submitJob Extra Attributes

7. Job Data Queries
7.1. Queries And Scale Considerations

8. Security

9. Client Examples
9.1. SOAP XML
9.2. Ruby
9.3. Python

10. More Information

A. Revision History

4 Table of Contents

Preface

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not, alternative
but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes the
Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keys and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current working
directory, enter the cat my_next_bestselling_novel command at the shell prompt
and press Enter to execute the command.

The above includes a file name, a shell command and a key, all presented in mono-spaced bold and all
distinguishable thanks to context.

Key combinations can be distinguished from an individual key by the plus sign that connects each part of
a key combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to a virtual terminal.

The first example highlights a particular key to press. The second example highlights a key combination:
a set of three keys pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System → Preferences → Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories →
Character Map from the main menu bar. Next, choose Search → Find… from the

Red Hat Enterprise MRG 2 Grid Developer Guide 5

https://fedorahosted.org/liberation-fonts/

Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-click
this highlighted character to place it in the Text to copy field and then click the Copy
button. Now switch back to your document and choose Edit → Paste from the gedit menu
bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and all
distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or variable
text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at a shell
prompt. If the remote machine is example.com and your username on that machine is
john, type ssh john@example.com .

The mount -o remount file-system command remounts the named file system. For
example, to remount the /home file system, the command is mount -o remount /home.

To see the version of a currently installed package, use the rpm -q package command. It
will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions

Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

6 Preface

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to the
current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. Getting Help and Giving Feedback

2.1. Do You Need Help?

If you experience difficulty with a procedure described in this documentation, visit the Red Hat Customer
Portal at http://access.redhat.com. Through the customer portal, you can:

search or browse through a knowledgebase of technical support articles about Red Hat products.

submit a support case to Red Hat Global Support Services (GSS).

access other product documentation.

Red Hat also hosts a large number of electronic mailing lists for discussion of Red Hat software and

Red Hat Enterprise MRG 2 Grid Developer Guide 7

http://access.redhat.com

technology. You can find a list of publicly available mailing lists at https://www.redhat.com/mailman/listinfo.
Click on the name of any mailing list to subscribe to that list or to access the list archives.

2.2. We Need Feedback!

If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/
against the product Red Hat Enterprise MRG.

When submitting a bug report, be sure to mention the manual's identifier: Grid_Developer_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the surrounding
text so we can find it easily.

8 Preface

https://www.redhat.com/mailman/listinfo
http://bugzilla.redhat.com/

Chapter 1. Overview
MRG Grid provides a web service interface for job submission, management and queries called Aviary.
This interface is designed to remove some of MRG Grid's complexity and provide access using the
common network data transport of HTTP. Aviary uses the Simple Object Access Protocol (SOAP) for
request and response exchanges between MRG Grid, Aviary-enabled components, and web service
clients. Web service clients can be developed using Java, Python, Ruby, or other languages.

Aviary is targeted at developers who wish to get started with MRG Grid. Developers can use Aviary
without the depth of knowledge associated with MRG Grid's High Throughput Computing capabilities.

Red Hat Enterprise MRG 2 Grid Developer Guide 9

Chapter 2. API Types

2.1. SOAP and WSDL
The API types are described using the SOAP XML schema, and the operations use the Web Services
Description Language (WSDL). This schema-based approach allows developers to use API types and
operations in their preferred programming language. Some popular web service toolkits for client
development are:

Apache Axis or CXF for Java

Suds for Python

Savon for Ruby

2.2. Aviary Model
Entities of this API include job, submission and attribute.

A job is the basic unit of work and has a minimum set of attributes. These attributes include the full path
of the command to be executed, command arguments, job owner, and requirements that provide
information to MRG Grid. The requirements list enables matching with a resource that can execute the
job.

A submission is an association of jobs under a common name key, such as
my_submission_for_today. Aviary can generate a submission name if one is not given.

An attribute describes aspects of a job. Some attributes can be set when the job is submitted or
edited later when the job is still actively being processed in the MRG Grid job queue. MRG Grid will
specify many job attributes after a submission but you can also provide custom attributes if they are
meaningful to the execution of the application represented by a job.

10 Chapter 2. API Types

Chapter 3. Aviary Installation and Configuration

3.1. Installation

RPM

Install the condor-aviary package for your platform. This will install the required software components,
including the WSDL and schema files for Aviary. These files can be used to develop a remote web
service client.

Important

Currently, due to a limitation in the underlying web service stack (Axis2/C), it is not possible to
dynamically retrieve the WSDL and imported XSD over HTTP using the ?wsdl URL syntax.

Source

Aviary can be included in a MRG Grid source build using the following variables when cmake is invoked:

-DWANT_CONTRIB:BOOL=TRUE -DWITH_AVIARY:BOOL=TRUE -DWITH_MANAGEMENT:BOOL=TRUE

3.2. Configuration
To enable Aviary use Remote Configuration to apply the following two features to your MRG Grid pool:

AviaryScheduler - configuration to activate a component that provides the Aviary job submission
and management capabilities

QueryServer - configuration to activate a component that provides the Aviary job query capabilities

Refer to the Remote Configuration chapter in the MRG Grid User Guide for information on applying
features to pools.

Red Hat Enterprise MRG 2 Grid Developer Guide 11

Chapter 4. Aviary Core Types
The XML schema defines core types that describe how Aviary operations are invoked and how results
are interpreted.

4.1. JobId

A JobId is a unit of information that fully describes the identity of a job. It contains the following
parameters:

job - the local identifier for a job assigned to a specific scheduler. It is a string that encodes two
positive integer numbers separated by a dot such as 1.0, 84.3, 2004.68. The first is a reference
to a local job grouping that may have multiple parts with attributes in common that are counted by the
second number. A typical example is a group of jobs that share the same command but pass
different arguments to the command, each job then writes its outputs to a different file.

scheduler - a string that identifies which scheduler the job was submitted to.

pool - a string that identifies a MRG Grid deployment. A deployment is an arena of schedulers, job
execution resources and components that match jobs to those resources.

submission - the SubmissionId related to the job.

4.2. SubmissionId

A SubmissionId is a unit of information that describes a submission in the following two parts:

name - a string provided by the user or generated on behalf of the user at the time of submission.
Submission names may be considered a way to associate and aggregate jobs in such a way that is
meaningful to the developer. An example of a meaningful name may be my_submission_04302011.
As submissions are open-ended, a user can continue to add individual jobs to this aggregating name
over time. This remains true though the individual jobs may have been scheduled and executed at
different times by MRG Grid. For example, the jobs 1.0, 28.0 and 2011.0 could all be part of the
submission named my_submission_04302011.

owner - a string containing the name of the original submitter.

4.3. Attribute

An attribute is type-coded information used by MRG Grid to evaluate, organize and execute job
matching and processing. MRG Grid jobs have multiple attributes, some are user-specified before
submission and many that are attached to a job by the MRG Grid infrastructure when added to the job
queue. A MRG Grid job is the sum of its attributes. An attribute consists of:

name - a string denoting the attribute name. Names can be predefined and understood by the MRG
Grid infrastructure or a custom attribute name.

type - an enumerated string with string, integer, float, expression or boolean values.

value - the string form of the value.

4.4. JobStatus

A JobStatus exists in one of the following states:

idle - the job is in a state where it is not ready or able to be assigned to a resource.

12 Chapter 4. Aviary Core Types

running - the job is assigned to and running on a resource.

held - the job exists in the MRG Grid queue but is held back from execution.

completed - the job ran to completion.

removed - the job was deleted from the job queue by a user.

suspended - the job has its execution paused at the resource. This depends on a job's ability to
respond to relevant platform-specific signals.

transferring_output - the job has completed and is in the process of transferring output files
back to the submission host.

4.5. ResourceConstraint

A ResourceConstraint is a basic quality that MRG Grid should consider when matching a new job to a
resource. There are five basic constraints defined in Aviary which are:

OS - Linux or Windows.

ARCH - for 32-bit platforms, INTEL; or X86_64 for 64-bit platforms. This is important when the
executable needed by the job is compiled for a particular architecture.

MEMORY - the expected total RAM required to execute the job.

DISK - expected total disk space to execute the job.

FILESYSTEM - the domain name representing a uniformly mounted network file system, as configured
by a MRG Grid administrator.

4.6. ResourceID

A ResourceID describes location attributes for an Aviary endpoint such as the Scheduler or
QueryServer.

resource - a parameter describing the class of Aviary endpoint. It can be one of ANY, COLLECTOR,
CUSTOM, MASTER, NEGOTIATOR, SCHEDULER, SLOT

pool - the name of the pool to which a Collector endpoint belongs.

name - a modified version of the Grid daemon's name.

sub_type - a parameter used to provide further classification to a resource.

Red Hat Enterprise MRG 2 Grid Developer Guide 13

Chapter 5. Aviary Locator
Aviary provides a bootstrap WSDL interface for finding other Aviary SOAP endpoints called the locator.
This is implemented within a condor_collector-specific plugin which receives generic ClassAds
from Aviary endpoint publishers that contain a fully-formed base URL. This base URL can be used by a
client to invoke their target services, but the client must still append the appropriate target operation to
the end of the URL.

When a locator is configured, Aviary endpoints will bind to ephemeral ports on their respective hosts and
publish their addressable URL to the locator plugin. Upon graceful exit, endpoints will notify the locator
plugin through ad invalidation. For failed endpoints, the plugin monitors regular updates of the published
ads and prunes them using a policy of missed update count over a configurable interval.

The default locator can be invoked at port 9000 on the Collector host (e.g.,
http://localhost:9000/services/locator/locate).

A sample command to run the Aviary locator is as follows:

Example 5.1. Sample Aviary locator command

$./locator.py --type CUSTOM --custom QUERY_SERVER --name user@hostname.com

Three arguments were provided in the sample command: the ResourceType, SubType, and Name.

--type – A required argument. The resource type can be either one of the following: ANY,
COLLECTOR, CUSTOM, MASTER, NEGOTIATOR, SCHEDULER or SLOT.

--custom – An optional argument. In the example given, the resource type specified is CUSTOM,
therefore the subtype of CUSTOM resources must also be specified. In this case, it is the
QUERY_SERVER. This field must always be the full string of the resource subtype.

--name – An optional argument. It can be a fragment or the exact full name of the endpoint host.
Exact matching can be used in the locate request by setting the XML attribute
partialMatches=false.

Note

For the full list of options available for the Aviary locator, run

$./locator.py --help

14 Chapter 5. Aviary Locator

http://localhost:9000/services/locator/locate

Chapter 6. Job Submission and Management
Job Management is used for job control and reporting. Methods in job management include job
submission, hold, release and removal.

Red Hat Enterprise MRG 2 Grid Developer Guide 15

Table 6.1. Job Submission and Management Operations
Operation Inputs Outputs Notes

submitJob Job submission
request fields are:

 cmd - a string
containing the
absolute path to an
executable or script
 owner - a string
identifying the
submitter
 iwd - the initial
working directory
where the job will be
executed
 args - an optional
string containing
arguments for the
cmd
 submission_name
- an optional string
identifying the
submission that
should be created
or that this job is to
be attached to
 requirements - an
optional list of
ResourceConstr
aints that specify
what type of
resource this job
should be targeted
at
 extra - optional list
of Attributes that
refine the request
beyond basic fields
or supersede the
MRG Grid Attributes
implied by other
basic fields in this
request

'OK' and the JobId or
an error containing
diagnostic text if a
problem was
encountered.

MRG Grid users
familiar with crafting
specific attributes
such as complex
requirements may do
so using the extra
attribute field in
conjunction with the
allowOverrides
XML attribute in the
request.

holdJob A single JobId and a
hold reason in string
format.

'OK' or an error with
text if the job is not
found or parsed.

A hold is a temporary
interruption of job
execution against a
resource; holds can be
used to affect job
attribute edits without
needing to resubmit the
job.

releaseJob A single JobId and a 'OK' or an error with Releasing a job is
moving it out of the held

16 Chapter 6. Job Submission and Management

release reason in string
format.

text if the job is not
found or parsed

moving it out of the held
state and back where it
is ready to be schedule
again with a resource.

removeJob A single JobId and a
remove reason in string
format.

'OK' or an error with
text if the job is not
found or parsed.

Job removal means
that the job is
prevented from
executing to
completion, note that its
existence in the MRG
Grid queue is still
maintained on record.

suspendJob A single JobId and a
suspend reason in
string format.

'OK' or an error with
text if the job is not
found or parsed.

A job can be
suspended depending
on its ability to respond
to platform-specific
interrupt signals. A
suspended job remains
with a claimed resource
until it is continued or
removed.

continueJob A single JobId and a
continue reason in
string format.

'OK' or an error with
text if the job is not
found or parsed.

A job that has been
suspended will be
signalled to continue
executing on its original
resource host.

setJobAttribute A single JobId and a
single Attribute.

'OK' or an error with
text is the job is not
found or parsed.

Attributes are
predefined by MRG
Grid or can be user-
created, for example a
name/type/value
shorthand combination:

JobPrio/INTEGER/2
would be shorthand
for the job attribute
predefined by MRG
Grid to control job
priority, set to a
value of 2 giving it
higher priority than
the default of 0

Recipe/STRING/sec
ret sauce would
be shorthand for a
custom job attribute
provided by a user,
meaningful to only
their application and
irrelevant to the
MRG Grid
infrastructure

Red Hat Enterprise MRG 2 Grid Developer Guide 17

Important

Users of condor_submit should keep the following differences between condor_submit and
Aviary job submission in mind:

The use of $(expr) syntax for evaluating expressions at submission time is not supported in
Aviary. However, the related $$(expr) syntax for evaluating expressions at match time is
supported.
Unlike condor_submit, Aviary will not filter the keyword error, which is a ClassAd
reserved word. In Aviary, use err= instead of error=.

6.1. submitJob Extra Attributes

The extra attributes are an advanced feature provided so that a submitter can apply more fine-grained
details to their job advertisement. Details are expressed in the ClassAd language, more information is
available in the ClassAd chapter of the MRG Grid User Guide. Attributes are described above in
Section 4.3, “Attribute”.

Consider the following attributes expressed in ClassAd syntax:

Output = /tmp/myjob.out

In Aviary the same details are expressed as:

<extra>
 <name>Out</name>
 <type>STRING</type>
 <value>/tmp/myjob.out</value>
</extra>

A user can override any of the basic job attributes by setting the allowOverrides XML attribute on
the submitJob element to true. Required attributes are:

cmd

owner

iwd

An additional job attribute type requirements can be specified. It will be given a default value if none is
specified.

If a different value is submitted for a basic attribute in the extra list and allowOverrides is set to
false, it will be ignored. In this case the value in the submitJob basic attribute will be used. For
example:

18 Chapter 6. Job Submission and Management

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:job="http://job.aviary.grid.redhat.com">
 <soapenv:Header/>
 <soapenv:Body>
 <job:SubmitJob allowOverrides="true">
 <cmd>/bin/sleep</cmd>
 <args>40</args>
 <owner>condor</owner>
 <iwd>/tmp</iwd>
 <requirements>
 <type>OS</type>
 <value>LINUX</value>
 </requirements>
 <extra>
 <name>Owner</name>
 <type>STRING</type>
 <value>somebody</value>
 </extra>
 </job:SubmitJob>
 </soapenv:Body>
</soapenv:Envelope>

The value somebody is used instead of condor as an override of the basic attribute has been specified.

As extra attributes are designed to provide tuning for job submission, below is a slightly more complex
use case. In the example, there is a job that can use all of the CPUs on a machine where HTCondor is
configured for dynamic slots. Dynamic slots are explained in the MRG Grid User Guide.

The basic requirements field is simplified for common use cases so a more detailed requirements value
is needed for matching like in the following example:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:job="http://job.aviary.grid.redhat.com">
 <soapenv:Header/>
 <soapenv:Body>
 <job:SubmitJob allowOverrides="true">
 <cmd>/bin/sleep</cmd>
 <args>40</args>
 <owner>condor</owner>
 <iwd>/tmp</iwd>
 <extra>
 <name>Requirements</name>
 <type>EXPRESSION</type>
 <value>"(TARGET.TotalCpus =!= UNDEFINED)
 && ((Target.PartitionableSlot =?= TRUE) ||
 (TARGET.DynamicSlot =?= TRUE)"</value>
 </extra>
 <extra>
 <name>RequestCpus</name>
 <type>EXPRESSION</type>
 <value>TotalCpus </value>
 </extra>
 </job:SubmitJob>
 </soapenv:Body>
</soapenv:Envelope>

If allowOverrides had not been specified true, the Requirements field would be given a default
value of true.

Red Hat Enterprise MRG 2 Grid Developer Guide 19

Chapter 7. Job Data Queries

20 Chapter 7. Job Data Queries

Table 7.1. Job Queries for Data
Operation Inputs Outputs Notes

getJobStatus Zero to many JobIds. Returns the current
status for each JobId
input, or an error
indicating that the job
could not be parsed or
found.

The most efficient
query as it returns the
least amount of data
per job.

getJobSummary Zero to many JobIds. Returns a summary for
each JobId input, or an
error indicating that the
job could not be parsed
or found.

Summary returned
includes:

 command
 command
arguments
 scheduler local
time when job was
added to job queue
 scheduler local
time of last update
to job status
 job status
 reason why job
was held, released
or removed

getJobDetails Zero to many JobIds. Returns all
Attributes for each
JobId input, or an error
indicating the job could
not be parsed or found.

A potentially expensive
operation, it is possible
to request all the
attributes for all the
jobs tracked in MRG
Grid. If performance is
a concern consider
judicious use of
summaries for certain
job sets.

getJobData A single JobId, the
type of data file content
requested (ERR, OUT,
LOG), the maximum
number of bytes to be
returned and whether
the file should be read
from the front to back.

Returns the file content
requested if successful.

Each job can specify an
error file (ERR), a log
file (LOG) or an output
file (OUT); the log file is
used by MRG Grid to
monitor the job
progress.

getSubmissionSumm
ary

Zero to many
SubmissionIds.

For each valid
submission returned,
these job totals will be
listed:

 completed
 held
 idle
 removed
 running
 suspended
 transferring_output

Individual job
summaries can be
included in the
response by setting the
XML attribute
includeJobSummarie
s to true in the request.

Red Hat Enterprise MRG 2 Grid Developer Guide 21

getSubmissionIDs The inputs for this
query will determine
whether a lexical
search or a search
based on submission
age is performed:

 size
 a ScanMode of
BEFORE or AFTER
(optional)
 a SubmissionID
offset (optional)

The list of submission
IDs returned from this
query will be limited by
the page size that was
requested. If there are
more IDs to be returned
beyond the size limit
then that amount will be
reflected in the
remaining value.

This query returns a
lexical sort of
submission IDs by
default, but can also be
used to return IDs that
are sorted by their age
in increasing or
decreasing order. The
use of a submission ID
offset can be thought of
as a random-access
pointer to particular
regions of the overall ID
list. This offset can be
applied as appropriate
for lexical or age
queries.

7.1. Queries And Scale Considerations
Submissions in Aviary are a logical grouping of one or more jobs. They make a convenient entity for an
organized, top-down view of the jobs in a pool. There are two query operations noted in Table 7.1, “Job
Queries for Data” that can return lists of SubmissionIDs. They can be used together to help a client
scale the management of submissions as their volume increases.

getSubmissionIDs - this operation helps clients discover unknown or unloaded submission IDs and
limit the number of IDs returned. Therefore, it is ideal for situations where a client needs to learn
about new submissions from a known point-in-time, or incrementally load older submission IDs.

getSubmissionSummary - this operation can accept zero or more submission IDs and return either
a summary for the submission itself or optionally also include summaries for each job within that
submission. It is better suited to tracking a set of known submission IDs.

Although getSubmissionSummary with no input arguments can return all the submissions known to a
Scheduler, this way of updating submission data becomes less and less efficient as the number of
submissions grow. Since IDs returned from the getSubmissionIDs operation can be used as
arguments for getSubmissionSummary, it is more efficient to collect IDs first then query the summary
data (including possibly job data) if requested by a user.

This same principle holds true for the job-related query operations. Since most users would be typically
be interested in a job's status (RUNNING or not), it makes more sense to get the job summary once then
update its status by calls to getJobStatus. By the same token, it would be perhaps the less common
case that they need to look at the detailed information provided by getJobDetails.

22 Chapter 7. Job Data Queries

Chapter 8. Security
Aviary supports job submissions, management and queries over a secure SSL connection with mutual
authentication. To enable this advanced feature, use remote configuration to add the
SSLEnabledAviaryScheduler and SSLEnabledQueryServer features. These features contain
parameters for specifying the file locations of server certificates, key files, and a certificate authority (CA)
file or directory. These certificates are expected to be in PEM format, the default used by OpenSSL.

Red Hat Enterprise MRG 2 Grid Developer Guide 23

Chapter 9. Client Examples
Aviary clients can be developed using a variety of programming languages. Below are code examples of
client actions using SOAP XML, Ruby and Python.

9.1. SOAP XML
The following example shows the request and response SOAP XML for a job submission.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:job="http://job.aviary.grid.redhat.com">
 <soapenv:Header/>
 <soapenv:Body>
 <job:SubmitJob allowOverrides="false">
 <cmd>/bin/sleep</cmd>
 <!--Optional:-->
 <args>40</args>
 <owner>ownername</owner>
 <iwd>/tmp</iwd>
 <!--Optional:-->
 <submission_name>my_submission</submission_name>
 <!--Zero or more repetitions:-->
 <requirements>
 <type>OS</type>
 <value>LINUX</value>
 </requirements>
 <!--Zero or more repetitions:-->
 <extra>
 <name>MYDATA</name>
 <type>STRING</type>
 <value>the data</value>
 </extra>
 </job:SubmitJob>
 </soapenv:Body>
</soapenv:Envelope>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Body>
 <n:SubmitJobResponse xmlns:n="http://job.aviary.grid.redhat.com">
 <id>
 <job>247.0</job>
 <pool>localhost</pool>
 <scheduler>username@localhost.localdomain</scheduler>
 <submission>
 <name>my_submission</name>
 <owner>username</owner>
 </submission>
 </id>
 <status>
 <code>OK</code>
 <text/>
 </status>
 </n:SubmitJobResponse>
 </soapenv:Body>
</soapenv:Envelope>

9.2. Ruby

24 Chapter 9. Client Examples

The following example shows a Ruby Savon web service client that generates a basic submission.

uses Savon http://savonrb.com/
require 'rubygems'
httpi >= 0.9.2
require 'httpi'
savon >= 0.9.1
require 'savon'
require "openssl"

client = Savon::Client.new do |wsdl|
 wsdl.document = "/var/lib/condor/aviary/services/job/aviary-job.wsdl"
 wsdl.endpoint = "http://localhost:9090/services/job/submitJob"
end

xml = Builder::XmlMarkup.new
xml.cmd("/bin/sleep")
xml.args("40")
xml.owner("condor")
xml.iwd("/tmp")

response = client.request :job, "SubmitJob" do
 soap.namespaces["xmlns:job"] = "http://job.aviary.grid.redhat.com"
 soap.body = xml.target!
end

9.3. Python
The following example shows a Python Suds web service client that invokes a job query operation
based on user input. This operation also takes an optional JobID argument.

Red Hat Enterprise MRG 2 Grid Developer Guide 25

uses Suds - https://fedorahosted.org/suds/
import logging
from suds import *
from suds.client import Client
from sys import exit, argv, stdin
import time

enable these to see the SOAP messages
#logging.basicConfig(level=logging.INFO)
#logging.getLogger('suds.client').setLevel(logging.DEBUG)

change these for other default locations and ports
job_wsdl = 'file:/var/lib/condor/aviary/services/query/aviary-query.wsdl'

cmds = ['getJobStatus', 'getJobSummary', 'getJobDetails']

cmdarg = len(argv) > 1 and argv[1]
cproc = len(argv) > 2 and argv[2]
job_url = len(argv) > 3 and argv[3] or "http://localhost:9091/services/query/"

if cmdarg not in cmds:
 print "error unknown command: ", cmdarg
 print "available commands are: ",cmds
 exit(1)

client = Client(job_wsdl);
job_url += cmdarg
client.set_options(location=job_url)

enable to see service schema
#print client

set up our JobID
if cproc:
 jobId = client.factory.create("ns0:JobID")
 jobId.job = cproc
else:
 # returns all jobs
 jobId = None

try:
 func = getattr(client.service, cmdarg, None)
 if callable(func):
 result = func(jobId)
except Exception, e:
 print "invocation failed: ", job_url
 print e
 exit(1)

print result

26 Chapter 9. Client Examples

Chapter 10. More Information

Reporting Bugs

Follow these instructions to enter a bug report:

1. Create a Bugzilla account.

2. Log in and click on Enter A New Bug Report.

3. You will need to identify the product (Red Hat Enterprise MRG), the version (2.2), and whether the
bug occurs in the software (component=grid) or in the documentation
(component=Grid_Developer_Guide).

Further Reading
Red Hat Enterprise MRG and MRG Grid Product Information

http://www.redhat.com/mrg

MRG Grid User Guide and other Red Hat Enterprise MRG manuals

http://docs.redhat.com/docs/en-US/index.html

HTCondor Manual

http://research.cs.wisc.edu/htcondor/manual/

Red Hat Knowledgebase

https://access.redhat.com/knowledge/search

Red Hat Enterprise MRG 2 Grid Developer Guide 27

https://bugzilla.redhat.com/createaccount.cgi
https://bugzilla.redhat.com/enter_bug.cgi
http://www.redhat.com/mrg
http://docs.redhat.com/docs/en-US/index.html
http://research.cs.wisc.edu/htcondor/manual/
https://access.redhat.com/knowledge/search

Revision History
Revision 3.0-2 Wed Jan 30 2013 David Ryan

Various edits including BZ#756254 for Suspend/Continue actions for jobs.

Revision 3.0-1 Fri Jan 26 2013 David Ryan
BZ#882822 - Updating HTCondor product name.

Revision 3.0-0 Fri Sep 14 2012 Cheryn Tan
Prepared for publishing (MRG 2.2).

Revision 2-4 Fri Aug 10 2012 Cheryn Tan
Rebuild with Publican 3.0.

Revision 2-3 Thu Jul 17 2012 Cheryn Tan
BZ#702492 - Added admonition on job submission for condor_submit users.

Revision 2-1 Tue Feb 28 2012 Tim Hildred
Updated configuration file for new publication tool.

Revision 2-0 Tue Dec 6 2011 Alison Young
Prepared for publishing

Revision 1-9 Mon Nov 21 2011 Alison Young
BZ#722996 - extra attribute usage in Aviary submits
BZ#754451 - 2.1 engineering review and feedback

Revision 1-8 Tue Nov 15 2011 Alison Young
BZ#752406 - change RHEL versions

Revision 1-7 Fri Nov 11 2011 Alison Young
BZ#722996 - updated example code

Revision 1-5 Thu Oct 20 2011 Alison Young
BZ#722996 - updated security chapter

Revision 1-4 Wed Oct 19 2011 Alison Young
BZ#722996 - Advanced extra attribute usage in Aviary submits
BZ#732390 - Missing submission as parameter of jobID

Revision 1-3 Wed Sep 07 2011 Alison Young
Prepared for publishing

Revision 1-2 Tue Aug 23 2011 Alison Young
BZ#731649 - Change getSubmissionSummaries to getSubmissionSummary

Revision 1-1 Thu Jun 23 2011 Alison Young
Prepared for publishing

Revision 1-0 Thu Jun 23 2011 Alison Young
Prepared for publishing

28 Revision History

Revision 0.1-5 Thu Jun 02 2011 Alison Young
BZ#674385 - Minor updates

Revision 0.1-4 Mon May 09 2011 Alison Young
Minor XML updates

Revision 0.1-3 Thu May 05 2011 Alison Young
BZ#674385- Restructured book and inserted additional source content provided

Revision 0.1-2 Wed Mar 30 2011 Alison Young
Inserted Submit, Hold and Release method descriptions in Job Management

Revision 0.1-1 Thu Mar 3 2011 Alison Young
Added skeleton chapters and sections

Revision 0.1-0 Thu Mar 3 2011 Alison Young
Initial creation of book by publican

Red Hat Enterprise MRG 2 Grid Developer Guide 29

	Grid Developer Guide
	Developer-focused information for the Grid component of Red Hat Enterprise MRG
	David Ryan
	Cheryn Tan
	Alison Young

	Legal Notice
	Abstract
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	Note
	Important
	Warning
	2. Getting Help and Giving Feedback
	2.1. Do You Need Help?
	2.2. We Need Feedback!

	Chapter 1. Overview
	Chapter 2. API Types
	2.1. SOAP and WSDL
	2.2. Aviary Model

	Chapter 3. Aviary Installation and Configuration
	3.1. Installation
	RPM

	Important
	Source

	3.2. Configuration

	Chapter 4. Aviary Core Types
	4.1. JobId
	4.2. SubmissionId
	4.3. Attribute
	4.4. JobStatus
	4.5. ResourceConstraint
	4.6. ResourceID

	Chapter 5. Aviary Locator
	Example 5.1. Sample Aviary locator command
	Note

	Chapter 6. Job Submission and Management
	Table 6.1. Job Submission and Management Operations
	Important
	6.1. submitJob Extra Attributes

	Chapter 7. Job Data Queries
	Table 7.1. Job Queries for Data
	7.1. Queries And Scale Considerations

	Chapter 8. Security
	Chapter 9. Client Examples
	9.1. SOAP XML
	9.2. Ruby
	9.3. Python

	Chapter 10. More Information
	Reporting Bugs
	Further Reading

	Revision History

