
Jaromír Hradí lek Matt Newsome Robert Krátký

Red Hat Developer Toolset 6.0
User Guide

Installing and Using Red Hat Developer Toolset

Red Hat Developer Toolset 6.0 User Guide

Installing and Using Red Hat Developer Toolset

Jaromír Hradílek
Red Hat Customer Content Services

Matt Newsome
Red Hat Software Engineering

Robert Krátký
Red Hat Customer Content Services
rkratky@redhat.com

Legal Notice

Copyright © 2014-2016 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, o r a modified version o f it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red
Hat trademarks must be removed.

Red Hat, as the licensor o f this document, waives the right to enforce, and agrees not to assert,
Section 4d o f CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks o f Red Hat, Inc., registered in the United States and o ther
countries.

Linux ® is the registered trademark o f Linus Torvalds in the United States and o ther countries.

Java ® is a registered trademark o f Oracle and/or its affiliates.

XFS ® is a trademark o f Silicon Graphics International Corp. or its subsidiaries in the United
States and/or o ther countries.

MySQL ® is a registered trademark o f MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an o fficial trademark o f Joyent. Red Hat Software Collections is not fo rmally
related to or endorsed by the o fficial Joyent Node.js open source or commercial pro ject.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service
marks or trademarks/service marks o f the OpenStack Foundation, in the United States and o ther
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All o ther trademarks are the property o f their respective owners.

Abstract
Red Hat Developer Too lset is a Red Hat o ffering for developers on the Red Hat Enterprise Linux
platform. The Red Hat Developer Too lset User Guide provides an overview of this product,
explains how to invoke and use the Red Hat Developer Too lset versions o f the too ls, and links
to resources with more in-depth information.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

Part I. Int roduct ion

Chapt er 1 . Red Hat Developer T oolset
1.1. Ab o ut Red Hat Develo p er To o lset
1.2. Main Features
1.3. Co mp atib il i ty
1.4. Getting Access to Red Hat Develo p er To o lset
1.5. Install ing Red Hat Develo p er To o lset
1.6 . Up d ating Red Hat Develo p er To o lset
1.7. Uninstall ing Red Hat Develo p er To o lset
1.8 . Using Red Hat Develo p er To o lset Co ntainer Imag es
1.9 . Ad d itio nal Reso urces

Part II. Development T ools

Chapt er 2 . GNU Compiler Collect ion (GCC)
2.1. GNU C Co mp iler
2.2. GNU C++ Co mp iler
2.3. GNU Fo rtran Co mp iler
2.4. Ad d itio nal Reso urces

Chapt er 3. GNU make
3.1. Install ing make
3.2. Using make
3.3. Using Makefiles
3.4. Ad d itio nal Reso urces

Chapt er 4 . binut ils
4.1. Install ing b inuti ls
4.2. Using the GNU Assemb ler
4.3. Using the GNU Linker
4.4. Using Other Binary To o ls
4.5. Ad d itio nal Reso urces

Chapt er 5. elfut ils
5.1. Install ing elfuti ls
5.2. Using elfuti ls
5.3. Ad d itio nal Reso urces

Chapt er 6 . dwz
6 .1. Install ing d wz
6 .2. Using d wz
6 .3. Ad d itio nal Reso urces

Part III. Debugging T ools

Chapt er 7 . GNU Debugger (GDB)
7.1. Install ing the GNU Deb ug g er
7.2. Prep aring a Pro g ram fo r Deb ug g ing
7.3. Running the GNU Deb ug g er
7.4. Lis ting So urce Co d e
7.5. Setting Breakp o ints
7.6 . Starting Executio n
7.7. Disp laying Current Values
7.8 . Co ntinuing Executio n

4

5
5
7
7
8

10
12
13
13
19

2 1

2 2
22
24
27
29

31
31
31
32
33

35
35
35
36
37
37

39
39
39
40

4 1
41
41
41

4 3

4 4
44
44
45
46
47
49
49
50

T able of Cont ent s

1

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

7.8 . Co ntinuing Executio n
7.9 . Ad d itio nal Reso urces

Chapt er 8 . st race
8 .1. Install ing strace
8 .2. Using strace
8 .3. Ad d itio nal Reso urces

Chapt er 9 . lt race
9 .1. Install ing ltrace
9 .2. Using ltrace
9 .3. Ad d itio nal Reso urces

Chapt er 1 0 . memst omp
10 .1. Install ing memsto mp
10 .2. Using memsto mp
10 .3. Ad d itio nal Reso urces

Part IV. Performance Monit oring T ools

Chapt er 1 1 . Syst emT ap
11.1. Install ing SystemTap
11.2. Using SystemTap
11.3. Ad d itio nal Reso urces

Chapt er 1 2 . Valgrind
12.1. Install ing Valg rind
12.2. Using Valg rind
12.3. Reb uild ing Valg rind
12.4. Ad d itio nal Reso urces

Chapt er 1 3. OProfile
13.1. Install ing OPro fi le
13.2. Using OPro fi le
13.3. Ad d itio nal Reso urces

Chapt er 1 4 . Dyninst
14.1. Install ing Dyninst
14.2. Using Dyninst
14.3. Ad d itio nal Reso urces

Part V. Get t ing Help

Chapt er 1 5. Accessing Red Hat Product Document at ion
Red Hat Develo p er To o lset
Red Hat Enterp rise Linux

Chapt er 1 6 . Cont act ing Global Support Services
16 .1. Gathering Req uired Info rmatio n
16 .2. Escalating an Issue
16 .3. Re-o p ening a Service Req uest
16 .4. Ad d itio nal Reso urces

Appendix A. Changes in Version 6 .0
A.1. Chang es in b inuti ls
A.2. Chang es in elfuti ls
A.3. Chang es in GCC
A.4. Chang es in GDB

50
51

52
52
52
55

56
56
56
59

6 0
6 1
6 1
6 3

6 4

6 5
6 5
6 6
6 6

6 8
6 8
6 9
6 9
70

7 1
71
71
72

7 4
74
74
79

8 1

8 2
8 2
8 2

8 3
8 3
8 4
8 5
8 5

8 6
8 6
8 8
8 9
9 0

User Guide

2

. .

. .

A.4. Chang es in GDB
A.5. Chang es in OPro fi le
A.6 . Chang es in strace
A.7. Chang es in SystemTap
A.8 . Chang es in d yninst
A.9 . Chang es in Valg rind

Appendix B. Revision Hist ory

Index

9 0
9 2
9 2
9 2
9 3
9 3

9 5

9 5

T able of Cont ent s

3

Part I. Introduction

User Guide

4

Chapter 1. Red Hat Developer Toolset

1.1. About Red Hat Developer Toolset

Red Hat Developer Toolset is a Red Hat offering for developers on the Red Hat Enterprise Linux
platform. It provides a complete set of development and performance analysis tools that can be
installed and used on multiple versions of Red Hat Enterprise Linux. Executables built with the
Red Hat Developer Toolset toolchain can then also be deployed and run on multiple versions of
Red Hat Enterprise Linux. For detailed compatibility information, see Section 1.3, “Compatibility” .

Red Hat Developer Toolset does not replace the default system tools provided with Red Hat
Enterprise Linux 6 or 7 when installed on those platforms. Instead, a parallel set of developer tools
provides an alternative, newer version of those tools for optional use by developers. The default
compiler and debugger, for example, remain those provided by the base Red Hat Enterprise Linux
system.

What Is New in Red Hat Developer T oolset 6.0

Red Hat Developer Toolset 6.0 introduces support for additional 64-bit architectures:

The 64-bit ARM architecture (AArch64)

IBM POWER, big endian

IBM POWER, little endian

IBM z Systems

The make tool for controlling the generation of executables and other non-source files of a program
from the program's source files has been added to Red Hat Developer Toolset 6.0. To get the Red Hat
Developer Toolset version of make, install the devtoolset-6-make package or the devtoolset-6-toolchain
package, which automatically installs other tools for building applications from source code.

Note

The version number of Red Hat Developer Toolset has been raised from 4.1 to 6.0 with this
release to signify the major improvements brought by GCC 6 .2.1 (upgraded from version
5.3.1 in the previous release of Red Hat Developer Toolset). There will be no Red Hat
Developer Toolset 5.0.

Since Red Hat Developer Toolset 4.1, the Red Hat Developer Toolset content is also available in the
ISO format at https://access.redhat.com/downloads, specifically for Server and Workstation. Note that
packages that require the Optional channel, which are discussed in Section 1.5.3, “ Installing Optional
Packages” , cannot be installed from the ISO image.

Table 1.1. Red Hat Developer Toolset Components

Name Version Descript ion
GCC 6.2.1 A portable compiler suite with support for C, C++, and Fortran.
binutils 2.27 A collection of binary tools and other utilities to inspect and

manipulate object files and binaries.
elfutils 0.167 A collection of binary tools and other utilities to inspect and

manipulate ELF files.

Chapt er 1 . Red Hat Developer T oolset

5

https://access.redhat.com/downloads
https://access.redhat.com/downloads/content/201
https://access.redhat.com/downloads/content/203

dwz 0.12 A tool to optimize DWARF debugging information contained in ELF
shared libraries and ELF executables for size.

GDB 7.12 A command line debugger for programs written in C, C++, and
Fortran.

ltrace 0.7.91 A debugging tool to display calls to dynamic libraries that a
program makes. It can also monitor system calls executed by
programs.

strace 4.12 A debugging tool to monitor system calls that a program uses and
signals it receives.

memstomp 0.1.5 A debugging tool to identify calls to library functions with
overlapping memory regions that are not allowed by various
standards.

SystemTap 3.0 A tracing and probing tool to monitor the activities of the entire
system without the need to instrument, recompile, install, and reboot.

Valgrind 3.12.0 An instrumentation framework and a number of tools to profile
applications in order to detect memory errors, identify memory
management problems, and report any use of improper arguments in
system calls.

OProfile 1.1.0 A system-wide profiler that uses the performance monitoring
hardware on the processor to retrieve information about the kernel
and executables on the system.

Dyninst 9.2.0 A library for instrumenting and working with user-space executables
during their execution.

Name Version Descript ion

Red Hat Developer Toolset differs from “Technology Preview” compiler releases previously supplied
in Red Hat Enterprise Linux in two important respects:

1. Red Hat Developer Toolset can be used on multiple major and minor releases of Red Hat
Enterprise Linux, as detailed in Section 1.3, “Compatibility” .

2. Unlike Technology Preview compilers and other tools shipped in earlier Red Hat
Enterprise Linux, Red Hat Developer Toolset is fully supported under Red Hat
Enterprise Linux Subscription Level Agreements, is functionally complete, and is intended for
production use.

Important bug fixes and security errata are issued to Red Hat Developer Toolset subscribers in a
similar manner to Red Hat Enterprise Linux for two years from the release of each major version
release. A new major version of Red Hat Developer Toolset is released annually, providing
significant updates for existing components and adding major new components. A single minor
release, issued six months after each new major version release, provides a smaller update of bug
fixes, security errata, and new minor components.

Additionally, the Red Hat Enterprise Linux Application Compatibility Specification also applies to
Red Hat Developer Toolset (subject to some constraints on the use of newer C++11 language
features, detailed in Section 2.2.4, “C++ Compatibility”).

User Guide

6

https://access.redhat.com/support/offerings/techpreview/

Important

Applications and libraries provided by Red Hat Developer Toolset do not replace the Red Hat
Enterprise Linux system versions, nor are they used in preference to the system versions.
Using a framework called Sof tware Collect ions , an additional set of developer tools is
installed into the /opt/ directory and is explicitly enabled by the user on demand using the
scl utility.

1.2. Main Features

The Red Hat Developer Toolset version of the GNU Compiler Collect ion (GCC) has been
upgraded to version 6.2.1 with major improvements and many bug fixes, including the following:

The C++ compiler defaults to C++14 rather than C++98. Certain experimental C++17 language
and runtime features have also been made available.

OpenMP 4.5 support for C and C++ has been added.

A new option, -mfloat128, has been implemented. It allows users to experiment with IEEE 128-bit
floating point.

Early support has been added for IEEE 128-bit floating point.

Support has been added for the z13 processor of the IBM z Systems architecture.

Support has been added for Intel Skylake processors with support for the AVX-512 extensions
and the following instruction sets: Foundation (F), Byte and Word (BW), Doubleword and
Quadword (DQ), Vector Length Extensions (VL), and Conflict Detection (CD).

Support has been added for 64-bit ARM (AArch64) LSE extensions and support for new
implementations and code-generation tuning for those implementations of the AArch64 ISA.

The version of the GNU Debugger (GDB) included in Red Hat Developer Toolset provides new
features, including the following:

Support for recording btrace without maintaining an active GDB connection.

Support for running interpreters on specified input or output devices.

The Red Hat Developer Toolset 6.0 version of binut ils provides these features:

Support has been added for generating and using compressed debug sections.

The linker now automatically enables the read-only run-time relocations unless explicitly told
otherwise. This helps to enhance the security of executables.

The assembler now supports the ARM v8.1 and ARM v8-M architectures, including the Adv.SIMD,
LOR, PAN, Security, and DSP extensions.

For a full list of changes and features introduced in this release, see Appendix A, Changes in Version
6.0.

1.3. Compat ibilit y

Chapt er 1 . Red Hat Developer T oolset

7

Red Hat Developer Toolset 6.0 is available for Red Hat Enterprise Linux 6 and 7 for 64-bit Intel and
AMD architectures. Figure 1.1, “Red Hat Developer Toolset 6.0 Compatibility Matrix” illustrates the
support for binaries built with Red Hat Developer Toolset on a certain version of Red Hat
Enterprise Linux when those binaries are run on various other versions of this system.

For ABI compatibility information, see Section 2.2.4, “C++ Compatibility” .

Figure 1.1. Red Hat Developer Toolset 6 .0 Compat ib ility Matrix

1.4 . Get t ing Access to Red Hat Developer Toolset

Red Hat Developer Toolset is an offering that is distributed as a part of the Red Hat
Software Collections content set, which is available to customers with Red Hat Enterprise Linux 6 and
7 subscriptions listed at https://access.redhat.com/solutions/472793. Depending on the subscription
management service with which you registered your Red Hat Enterprise Linux system, you can either
enable Red Hat Developer Toolset by using the Red Hat Subscription Management, or by using
RHN Classic.

For detailed instructions on how to enable Red Hat Software Collections (and thus gain access to
Red Hat Developer Toolset) using RHN Classic or Red Hat Subscription Management, see the
respective section below. For information on how to register your system with one of these
subscription management services, see the Red Hat Subscription Management collection of guides.

1.4 .1. Using Red Hat Subscript ion Management

If your system is registered with Red Hat Subscription Management, complete the following steps to
attach a subscription that provides access to the repository for Red Hat Software Collections (which
includes Red Hat Developer Toolset), and then enable that repository:

User Guide

8

https://access.redhat.com/solutions/472793
https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/

1. Determine the pool ID of a subscription that provides Red Hat Software Collections (and thus
also Red Hat Developer Toolset). To do so, type the following at a shell prompt as root to
display a list of all subscriptions that are available for your system:

subscription-manager list --available

For each available subscription, this command displays its name, unique identifier,
expiration date, and other details related to your subscription. The pool ID is listed on a line
beginning with Pool ID .

For a complete list of subscriptions that provide access to Red Hat Developer Toolset, see
https://access.redhat.com/solutions/472793.

2. Attach the appropriate subscription to your system by running the following command as
root:

subscription-manager attach --pool=pool_id

Replace pool_id with the pool ID you determined in the previous step. To verify the list of
subscriptions your system has currently attached, at any time, run as root:

subscription-manager list --consumed

3. Determine the exact name of the Red Hat Software Collections repository. To do so, type the
following at a shell prompt as root to retrieve repository metadata and to display a list of
available Yum repositories:

subscription-manager repos --list

The repository names depend on the specific version of Red Hat Enterprise Linux you are
using and are in the following format:

rhel-variant-rhscl-version-rpms
rhel-variant-rhscl-version-debug-rpms
rhel-variant-rhscl-version-source-rpms

In addition, certain packages, such as devtoolset-6-gcc-plugin-devel, depend on packages that
are only available in the Opt ional channel. The repository names with these packages use
the following format:

rhel-version-variant-optional-rpms
rhel-version-variant-optional-debug-rpms
rhel-version-variant-optional-source-rpms

For both the regular repositories and optional repositories, replace variant with the Red Hat
Enterprise Linux system variant (server or workstation), and version with the Red Hat
Enterprise Linux system version (6-eus, 6 , or 7).

4. Enable the repositories from step no. 3 by running the following command as root:

subscription-manager repos --enable repository

Replace repository with the name of the repository to enable.

Chapt er 1 . Red Hat Developer T oolset

9

https://access.redhat.com/solutions/472793

Once the subscription is attached to the system, you can install Red Hat Developer Toolset as
described in Section 1.5, “ Installing Red Hat Developer Toolset” . For more information on how to
register your system using Red Hat Subscription Management and associate it with subscriptions,
see the Red Hat Subscription Management collection of guides.

1.4 .2. Using RHN Classic

If you are running Red Hat Enterprise Linux 6, and your system is registered with RHN Classic,
complete the following steps to subscribe to Red Hat Software Collections (which includes Red Hat
Developer Toolset):

1. Determine the exact name of the Red Hat Software Collections channel. To do so, type the
following at a shell prompt as root to display a list of all channels that are available to you:

rhn-channel --available-channels

The name of the channel depends on the specific version of Red Hat Enterprise Linux you are
using and is in the following format:

rhel-x86_64-variant-version-rhscl-2

In addition, certain packages, such as devtoolset-6-gcc-plugin-devel, depend on packages that
are only available in the Opt ional channel. The name of this channel uses the following
format:

rhel-x86_64-variant-optional-6

Replace variant with the Red Hat Enterprise Linux system variant (server or workstation).

2. Subscribe the system to the channels from step no. 1 by running the following command as
root:

rhn-channel --add --channel=channel_name

Replace channel_name with the name of the channel to enable.

3. To verify the list of channels you are subscribed to, at any time, run as root:

rhn-channel --list

Once the system is subscribed, you can install Red Hat Developer Toolset as described in
Section 1.5, “ Installing Red Hat Developer Toolset” . For more information on how to register your
system with RHN Classic, see the Red Hat Subscription Management collection of guides.

1.5. Installing Red Hat Developer Toolset

Red Hat Developer Toolset is distributed as a collection of RPM packages that can be installed,
updated, uninstalled, and inspected by using the standard package management tools that are
included in Red Hat Enterprise Linux. Note that a valid subscription that provides access to the
Red Hat Software Collections content set is required in order to install Red Hat Developer Toolset on
your system. For detailed instructions on how to associate your system with an appropriate
subscription and get access to Red Hat Developer Toolset, see Section 1.4, “Getting Access to
Red Hat Developer Toolset” .

User Guide

10

https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/
https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/

Important

Before installing Red Hat Developer Toolset, install all available Red Hat Enterprise Linux
updates.

1.5.1. Installing All Available Components

To install all components that are included in Red Hat Developer Toolset, install the devtoolset-6
package by typing the following at a shell prompt as root:

yum install devtoolset-6

This installs the Eclipse development environment, all development, debugging, and performance
monitoring tools, and other dependent packages to the system. Alternatively, you can choose to
install only a selected package group as described in Section 1.5.2, “ Installing Individual Package
Groups” .

Note

Note that since Red Hat Developer Toolset 3.0, the scl-utils package is not a part of Red Hat
Developer Toolset, which is a change from preceding versions where the scl utility was
installed along with the Red Hat Developer Toolset software collection.

1.5.2. Installing Individual Package Groups

To make it easier to install only certain components, such as the integrated development environment
or the software development toolchain, Red Hat Developer Toolset is distributed with a number of
meta packages that allow you to install selected package groups as described in Table 1.2, “Red Hat
Developer Toolset Meta Packages” .

Table 1.2. Red Hat Developer Toolset Meta Packages

Package Name Descript ion Installed Components
devtoolset-6-perftools Performance monitoring tools SystemTap, Valgrind, OProfile,

Dyninst
devtoolset-6-toolchain Development and debugging

tools
GCC, make, GDB, binutils,
elfutils, dwz, memstomp, strace,
ltrace

To install any of these meta packages, type the following at a shell prompt as root:

yum install package_name

Replace package_name with a space-separated list of meta packages you want to install. For
example, to install only the development and debugging toolchain and packages that depend on it,
type as root:

~]# yum install devtoolset-6-toolchain

Chapt er 1 . Red Hat Developer T oolset

11

Alternatively, you can choose to install all available components as described in Section 1.5.1,
“ Installing All Available Components” .

1.5.3. Installing Opt ional Packages

Red Hat Developer Toolset is distributed with a number of optional packages that are not installed by
default. To list all Red Hat Developer Toolset packages that are available to you but not installed on
your system, type the following command at a shell prompt:

yum list available devtoolset-6-*

To install any of these optional packages, run as root:

yum install package_name

Replace package_name with a space-separated list of packages that you want to install. For example,
to install the devtoolset-6-gdb-gdbserver and devtoolset-6-gdb-doc packages, type:

~]# yum install devtoolset-6-gdb-gdbserver devtoolset-6-gdb-doc

1.5.4 . Installing Debugging Informat ion

To install debugging information for any of the Red Hat Developer Toolset packages, make sure that
the yum-utils package is installed and run the following command as root:

debuginfo-install package_name

For example, to install debugging information for the devtoolset-6-dwz package, type:

~]# debuginfo-install devtoolset-6-dwz

Note that in order to use this command, you need to have access to the repository with these
packages. If your system is registered with Red Hat Subscription Management, enable the
rhel-variant-rhscl-version-debug-rpms repository as described in Section 1.4.1, “Using
Red Hat Subscription Management” . If your system is registered with RHN Classic, subscribe the
system to the rhel-x86_64-variant-version-debuginfo channel as described in
Section 1.4.2, “Using RHN Classic” . For more information on how to get access to debuginfo
packages, see https://access.redhat.com/site/solutions/9907.

Note

The devtoolset-6-package_name-debuginfo packages can conflict with the corresponding
packages from the base Red Hat Enterprise Linux system or from other versions of Red Hat
Developer Toolset. This conflict also occurs in a multilib environment, where 64-bit debuginfo
packages conflict with 32-bit debuginfo packages. Manually uninstall the conflicting
debuginfo packages prior to installing Red Hat Developer Toolset 6.0 and install only relevant
debuginfo packages when necessary.

1.6. Updat ing Red Hat Developer Toolset

User Guide

12

https://access.redhat.com/site/solutions/9907

1.6.1. Updat ing to a Minor Version

When a new minor version of Red Hat Developer Toolset is available, run the following command as
root to update your Red Hat Enterprise Linux installation:

yum update

This updates all packages on your Red Hat Enterprise Linux system, including the Red Hat
Developer Toolset versions of the Eclipse development environment, development, debugging, and
performance monitoring tools, and other dependent packages.

Important

Use of Red Hat Developer Toolset requires the removal of any earlier pre-release versions of it.
Additionally, it is not possible to update to Red Hat Developer Toolset 6.0 from a pre-release
version of Red Hat Developer Toolset, including beta releases. If you have previously installed
any pre-release version of Red Hat Developer Toolset, uninstall it from your system as
described in Section 1.7, “Uninstalling Red Hat Developer Toolset” and install the new version
as documented in Section 1.5, “ Installing Red Hat Developer Toolset” .

1.6.2. Updat ing to a Major Version

When a new major version of Red Hat Developer Toolset is available, you can install it in parallel
with the previous version. For detailed instructions on how to install Red Hat Developer Toolset on
your system, see Section 1.5, “ Installing Red Hat Developer Toolset” .

1.7. Uninstalling Red Hat Developer Toolset

To uninstall Red Hat Developer Toolset packages from your system, type the following at a shell
prompt as root:

yum remove devtoolset-6* libasan libatomic libcilkrts libitm liblsan
libtsan libubsan

This removes the GNU Compiler Collect ion , GNU Debugger, binut ils , and other packages that
are a part of Red Hat Developer Toolset from the system.

Note

Red Hat Developer Toolset 6.0 for Red Hat Enterprise Linux 7 no longer includes the
libatomic and libitm libraries, which the above command attempts to remove, because
they are not required for a proper function of Red Hat Developer Toolset components on that
system. Nevertheless, the above command works as expected even on Red Hat
Enterprise Linux 7.

Note that the uninstallation of the tools provided by Red Hat Developer Toolset does not affect the
Red Hat Enterprise Linux system versions of these tools.

1.8. Using Red Hat Developer Toolset Container Images

Chapt er 1 . Red Hat Developer T oolset

13

Docker-formatted container images can be used to run Red Hat Developer Toolset components inside
virtual software containers, thus isolating them from the host system and allowing for their rapid
deployment. This section describes how to install and use pre-built container images with Red Hat
Developer Toolset components, as well as how to obtain Red Hat Developer Toolset Dockerfiles for
building custom container images and how to use the resulting images.

Note

The docker package, which contains the Docker daemon, command line tool, and other
necessary components for building and using docker-formatted container images, is currently
only available for the Server variant of the Red Hat Enterprise Linux 7 product. Docker-
formatted container images cannot be run on Red Hat Enterprise Linux 6, and Red Hat
Developer Toolset Dockerfiles are not distributed for Red Hat Enterprise Linux 6.

Follow the instructions outlined at Getting Docker in RHEL 7 to set up an environment for
building and using docker-formatted container images.

1.8.1. Using Pre-Built Container Images

Pre-built docker-formatted container images are available that contain selected toolchain and
perftools components of Red Hat Developer Toolset. This section describes how to obtain the pre-
built Red Hat Developer Toolset docker-formatted container images and how to run Red Hat
Developer Toolset components using these images.

The following images are available from the Red Hat Container Registry at
registry.access.redhat.com:

rhscl/devtoolset-6-toolchain-rhel7

The image contains the following Red Hat Developer Toolset components:

devtoolset-6-gcc

devtoolset-6-gcc-c++

devtoolset-6-gcc-fortran

devtoolset-6-gdb

rhscl/devtoolset-6-perftools-rhel7

The image contains all Red Hat Developer Toolset components included in the devtoolset-6-
perftools metapackage:

devtoolset-6-oprofile

devtoolset-6-systemtap

devtoolset-6-valgrind

devtoolset-6-dyninst

1.8 .1 .1 . Pulling Pre-Built Co nt ainer Images fro m t he Regist ry

User Guide

14

https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/getting-started-with-containers/#getting_docker_in_rhel_7

To pull a pre-built Red Hat Developer Toolset docker-formatted container image from the registry to
your local machine, run the following command as root:

docker pull image_name

Substitute the image_name parameter with the name of the container image. For example, to pull the
image containing selected Red Hat Developer Toolset toolchain components (rhscl/devtoolset-6-
toolchain-rhel7), run the following command as root:

~]# docker pull rhscl/devtoolset-6-toolchain-rhel7

1.8 .1 .2 . Running Red Hat Develo per T o o lset T o o ls fro m Pre-Built Co nt ainer
Images

To display general usage information for pre-built Red Hat Developer Toolset docker-formatted
container images that you have already pulled to your local machine (see Section 1.8.1.1, “Pulling
Pre-Built Container Images from the Registry”), run the following command as root:

docker run image_name usage

To launch an interactive shell within a pre-built docker-formatted container image, run the following
command as root:

docker run -ti image_name /bin/bash -l

In both of the above commands, substitute the image_name parameter with the name of the container
image you pulled to your local system and now want to use.

For example, to launch an interactive shell within the container image with selected toolchain
components, run the following command as root:

~]# docker run -ti rhscl/devtoolset-6-toolchain-rhel7 /bin/bash -l

Example 1.1. Using GCC in the Pre-Built Red Hat Developer Toolset Toolchain Image

This example illustrates how to obtain and launch the pre-built docker-formatted container image
with selected toolchain components of the Red Hat Developer Toolset and how to run the gcc
compiler within that image.

1. Make sure you have a Docker environment set up properly on your system by following
instructions at Getting Docker in RHEL 7.

2. Pull the pre-built toolchain Red Hat Developer Toolset container image from the official
Red Hat Container Registry:

~]# docker pull rhscl/devtoolset-6-toolchain-rhel7

3. To launch the container image with an interactive shell, issue the following command:

~]# docker run -ti rhscl/devtoolset-6-toolchain-rhel7
/bin/bash -l

Chapt er 1 . Red Hat Developer T oolset

15

https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/getting-started-with-containers/#getting_docker_in_rhel_7

4. To launch the container as a regular (non-root) user, use the sudo command. To map a
directory from the host system to the container file system, include the -v (or --volume)
option in the docker command:

~]$ sudo docker run -v ~/Source:/src -ti rhscl/devtoolset-6-
toolchain-rhel7 /bin/bash -l

In the above command, the host's ~/Source/ directory is mounted as the /src/ directory
within the container.

5. Once you are in the container's interactive shell, you can run Red Hat Developer Toolset
tools as expected. For example, to verify the version of the gcc compiler, run:

bash-4.2$ gcc -v
[...]
gcc version 5.2.1 20150716 (Red Hat 5.2.1-1) (GCC)

1.8.2. Using Container Images Built from Dockerfiles

Dockerfiles are available for selected Red Hat Developer Toolset components. Dockerfiles are text
files that contain instructions for automated building of docker-formatted container images. This
section describes how to obtain Red Hat Developer Toolset Dockerfiles, how to use them to build
docker-formatted container images, and how to run Red Hat Developer Toolset components using
the resulting container images.

Red Hat Developer Toolset 6.0 for Red Hat Enterprise Linux 7 is shipped with the following
Dockerfiles:

devtoolset-6-dyninst

devtoolset-6-elfutils

devtoolset-6-oprofile

devtoolset-6-systemtap

devtoolset-6-toolchain

devtoolset-6-valgrind

devtoolset-6

1.8 .2 .1 . Obt aining Do ckerfiles

The Red Hat Developer Toolset Dockerfiles are provided by the devtoolset-6-dockerfiles package. The
package contains individual Dockerfiles for building docker-formatted container images with
individual components and a meta-Dockerfile for building a docker-formatted container image with
all the components offered. To be able to use the Dockerfiles, install this package by executing:

~]# yum install devtoolset-6-dockerfiles

1.8 .2 .2 . Building Co nt ainer Images

Change to the directory where the Dockerfile is installed and run the following command as root:

User Guide

16

docker build -t image_name

Replace image_name with the desired name for the new image.

Example 1.2. Build ing a Container Image with a Red Hat Developer Toolset
Component

To build a docker-formatted container image for deploying the elfut ils tools in a container, follow
the instructions below:

1. Make sure you have a Docker environment set up properly on your system by following
instructions at Getting Docker in RHEL 7.

2. Install the package containing the Red Hat Developer Toolset Dockerfiles:

~]# yum install devtoolset-6-dockerfiles

3. Determine where the Dockerfile for the required component is located:

~]# rpm -ql devtoolset-6-dockerfiles | grep
"elfutils/Dockerfile"
/opt/rh/devtoolset-6/root/usr/share/devtoolset-6-
dockerfiles/rhel7/devtoolset-6-elfutils/Dockerfile

4. Change to the directory where the required Dockerfile is installed:

~]# cd /opt/rh/devtoolset-6/root/usr/share/devtoolset-6-
dockerfiles/rhel7/devtoolset-6-elfutils/

5. Build the container image:

~]# docker build -t devtoolset-6-elfutils-7 .

Replace devtoolset-6-elfutils-7 with the name you wish to assign to your resulting container
image.

1.8 .2 .3. Running Red Hat Develo per T o o lset T o o ls fro m Cust o m-Built Co nt ainer
Images

To display general usage information for images built from Red Hat Developer Toolset Dockerfiles
(see Section 1.8.2.2, “Building Container Images”), run the following command as root:

docker run image_name container-usage

To launch an interactive shell within a docker-formatted container image you built, run the following
command as root:

docker run -ti image_name /bin/bash -l

In both of the above commands, substitute the image_name parameter with the name of the container
image you chose when building it.

Chapt er 1 . Red Hat Developer T oolset

17

https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/getting-started-with-containers/#getting_docker_in_rhel_7

Example 1.3. Using elfut ils in a Custom-Built Red Hat Developer Toolset Image

This example illustrates how to launch a custom-built docker-formatted container image (built in
Example 1.2, “Building a Container Image with a Red Hat Developer Toolset Component”) with the
elfut ils component and how to run the eu-size tool within that image.

1. To launch the container image with an interactive shell, issue the following command:

~]# docker run -ti devtoolset-6-elfutils-7 /bin/bash -l

2. To launch the container as a regular (non-root) user, use the sudo command. To map a
directory from the host system to the container file system, include the -v (or --volume)
option in the docker command:

~]$ sudo docker run -v ~/Source:/src -ti devtoolset-6-
elfutils-7 /bin/bash -l

In the above command, the host's ~/Source/ directory is mounted as the /src/ directory
within the container.

3. Once you are in the container's interactive shell, you can run Red Hat Developer Toolset
tools as expected. For example, to verify the version of the eu-size tool, run:

bash-4.2$ eu-size -V
size (elfutils) 0.163
[...]

Using the SystemTap Tool f rom Container Images

When using the SystemTap tool from a container image (built using the Dockerfile supplied by the
devtoolset-4-dockerfiles package or from the pre-built perf tools image), additional configuration is
required, and the container needs to be run with special command-line options.

The following three conditions need to be met:

1. The image needs to be run with super-user privileges. To do this, run the image using the
following command:

~]$ docker run --ti --privileged --ipc=host --net=host --
pid=host devtoolset-4-systemtap /bin/bash -l

The above command assumes that you named the image devtoolset-4-systemtap when you
built it from the Dockerfile (/opt/rh/devtoolset-4/root/usr/share/devtoolset-4-
dockerfiles/rhel7/devtoolset-4-systemtap/Dockerfile).

To use the perf tools image, substitute the image name for devtoolset-6-perftools-rhel7 in the
above command.

2. The following kernel packages need to be installed in the container:

kernel
kernel-devel
kernel-debuginfo

User Guide

18

The version and release numbers of the above packages must match the version and release
numbers of the kernel running on the host system. Run the following command to determine
the version and release numbers of the hosts system's kernel:

~]$ uname -r
3.10.0-229.14.1.el7.x86_64

Note that the kernel-debuginfo package is only available from the Debug channel. Enable the
rhel-7-server-debug-rpms repository as described in Section 1.4.1, “Using Red Hat
Subscription Management” . For more information on how to get access to debuginfo
packages, see https://access.redhat.com/site/solutions/9907.

To install the required packages with the correct version, use the yum package manager and
the output of the uname command. For example, to install the correct version of the kernel
package, run the following command as root:

~]# yum install -y kernel-$(uname -r)

3. Save the container to a reusable image by executing the docker commit command. For
example, to save the custom-built SystemTap container:

~]$ docker commit devtoolset-4-systemtap-$(uname -r)

1.9. Addit ional Resources

For more information about Red Hat Developer Toolset and Red Hat Enterprise Linux, see the
resources listed below.

Online Documentat ion

Red Hat Subscription Management collection of guides — The Red Hat Subscription Management
collection of guides provides detailed information on how to manage subscriptions on Red Hat
Enterprise Linux.

Red Hat Developer Toolset 6.0 Release Notes — The Release Notes for Red Hat
Developer Toolset 6.0 contain more information.

Red Hat Enterprise Linux 6 Developer Guide and Red Hat Enterprise Linux 7 Developer Guide —
The Developer Guides for Red Hat Enterprise Linux 6 and 7 provide more information on the
Eclipse IDE, libraries and runtime support, compiling and building, debugging, and profiling on
these systems.

Red Hat Enterprise Linux 6 Installation Guide and Red Hat Enterprise Linux 7 Installation Guide —
The Installation Guides for Red Hat Enterprise Linux 6 an 7 explain how to obtain, install, and
update the system.

Red Hat Enterprise Linux 6 Deployment Guide — The Deployment Guide for Red Hat
Enterprise Linux 6 documents relevant information regarding the deployment, configuration, and
administration of Red Hat Enterprise Linux 6.

Red Hat Enterprise Linux 7 System Administrator's Guide — The System Administrator's Guide for
Red Hat Enterprise Linux 7 documents relevant information regarding the deployment,
configuration, and administration of Red Hat Enterprise Linux 7.

Chapt er 1 . Red Hat Developer T oolset

19

https://access.redhat.com/site/solutions/9907
https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/
https://access.redhat.com/site/documentation/en-US/Red_Hat_Developer_Toolset/6/html/6.0_Release_Notes/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Developer_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Installation_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/index.html

Get Started with Docker Formatted Container Images on Red Hat Systems — The guide contains a
comprehensive overview of information about building and using docker-formatted container
images on Red Hat Enterprise Linux 7 and Red Hat Enterprise Linux Atomic.

See Also

Appendix A, Changes in Version 6.0 provides a list of changes and improvements over the version
of the GNU Compiler Collection and GNU Debugger in the previous version of Red Hat
Developer Toolset.

User Guide

20

https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/getting-started-with-containers/#get_started_with_docker_formatted_container_images

Part II. Development Tools

Part II. Development T ools

21

Chapter 2. GNU Compiler Collection (GCC)

The GNU Compiler Collect ion , commonly abbreviated GCC , is a portable compiler suite with
support for a wide selection of programming languages.

Red Hat Developer Toolset is distributed with GCC 6 .2.1 . This version is more recent than the
version included in Red Hat Enterprise Linux and provides a number of bug fixes and enhancements.

2.1. GNU C Compiler

2.1.1. Installing the C Compiler

In Red Hat Developer Toolset, the GNU C compiler is provided by the devtoolset-6-gcc package and is
automatically installed with devtoolset-6-toolchain as described in Section 1.5, “ Installing Red Hat
Developer Toolset” .

2.1.2. Using the C Compiler

To compile a C program on the command line, run the gcc compiler as follows:

scl enable devtoolset-6 'gcc -o output_file source_file...'

This creates a binary file named output_file in the current working directory. If the -o option is omitted,
the compiler creates a file named a.out by default.

When you are working on a project that consists of several source files, it is common to compile an
object file for each of the source files first and then link these object files together. This way, when you
change a single source file, you can recompile only this file without having to compile the entire
project. To compile an object file on the command line, run the following command:

scl enable devtoolset-6 'gcc -o object_file -c source_file'

This creates an object file named object_file. If the -o option is omitted, the compiler creates a file
named after the source file with the .o file extension. To link object files together and create a binary
file, run:

scl enable devtoolset-6 'gcc -o output_file object_file...'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset gcc as default:

scl enable devtoolset-6 'bash'

User Guide

22

Note

To verify the version of gcc you are using at any point, type the following at a shell prompt:

which gcc

Red Hat Developer Toolset's gcc executable path will begin with /opt. Alternatively, you can
use the following command to confirm that the version number matches that for Red Hat
Developer Toolset gcc:

gcc -v

Important

Some newer library features are statically linked into applications built with Red Hat
Developer Toolset to support execution on multiple versions of Red Hat Enterprise Linux. This
adds a small additional security risk as normal Red Hat Enterprise Linux errata would not
change this code. If the need for developers to rebuild their applications due to such an issue
arises, Red Hat will signal this via a security erratum. Developers are strongly advised not to
statically link their entire application for the same reasons.

Note

The Red Hat Developer Toolset 6.0 version of GCC supports Cilk+, an extension to the C and
C++ languages for parallel programming, which can be enabled using the -fcilkplus
option. A runtime library, libcilkrts, is included in this release to support Cilk+. The
libcilkrts library has been a part of Red Hat Enterprise Linux since version 7.2, but the
package is not included in all supported Red Hat Enterprise Linux releases. To enable
dynamic linkage of binaries and libraries built with Red Hat Developer Toolset 6.0 GCC using
Cilk+ features on supported Red Hat Enterprise Linux releases that do not contain
libcilkrts, install the libcilkrts.so shared library from Red Hat Developer Toolset 6.0
with such binaries or libraries.

Example 2.1. Compiling a C Program on the Command Line

Consider a source file named hello.c with the following contents:

#include <stdio.h>

int main(int argc, char *argv[]) {
 printf("Hello, World!\n");
 return 0;
}

To compile this source code on the command line by using the gcc compiler from Red Hat
Developer Toolset, type:

Chapt er 2 . GNU Compiler Collect ion (GCC)

23

~]$ scl enable devtoolset-6 'gcc -o hello hello.c'

This creates a new binary file called hello in the current working directory.

2.1.3. Running a C Program

When gcc compiles a program, it creates an executable binary file. To run this program on the
command line, change to the directory with the executable file and type:

./file_name

Example 2.2. Running a C Program on the Command Line

Assuming that you have successfully compiled the hello binary file as shown in Example 2.1,
“Compiling a C Program on the Command Line” , you can run it by typing the following at a shell
prompt:

~]$./hello
Hello, World!

2.2. GNU C++ Compiler

2.2.1. Installing the C++ Compiler

In Red Hat Developer Toolset, the GNU C++ compiler is provided by the devtoolset-6-gcc-c++ package
and is automatically installed with the devtoolset-6-toolchain package as described in Section 1.5,
“ Installing Red Hat Developer Toolset” .

2.2.2. Using the C++ Compiler

To compile a C++ program on the command line, run the g++ compiler as follows:

scl enable devtoolset-6 'g++ -o output_file source_file...'

This creates a binary file named output_file in the current working directory. If the -o option is omitted,
the g++ compiler creates a file named a.out by default.

When you are working on a project that consists of several source files, it is common to compile an
object file for each of the source files first and then link these object files together. This way, when you
change a single source file, you can recompile only this file without having to compile the entire
project. To compile an object file on the command line, run the following command:

scl enable devtoolset-6 'g++ -o object_file -c source_file'

This creates an object file named object_file. If the -o option is omitted, the g++ compiler creates a file
named after the source file with the .o file extension. To link object files together and create a binary
file, run:

scl enable devtoolset-6 'g++ -o output_file object_file...'

User Guide

24

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset g++ as default:

scl enable devtoolset-6 'bash'

Note

To verify the version of g++ you are using at any point, type the following at a shell prompt:

which g++

Red Hat Developer Toolset's g++ executable path will begin with /opt. Alternatively, you can
use the following command to confirm that the version number matches that for Red Hat
Developer Toolset g++ :

g++ -v

Important

Some newer library features are statically linked into applications built with Red Hat
Developer Toolset to support execution on multiple versions of Red Hat Enterprise Linux. This
adds a small additional security risk as normal Red Hat Enterprise Linux errata would not
change this code. If the need for developers to rebuild their applications due to such an issue
arises, Red Hat will signal this via a security erratum. Developers are strongly advised not to
statically link their entire application for the same reasons.

Example 2.3. Compiling a C+ + Program on the Command Line

Consider a source file named hello.cpp with the following contents:

#include <iostream>

using namespace std;

int main(int argc, char *argv[]) {
 cout << "Hello, World!" << endl;
 return 0;
}

To compile this source code on the command line by using the g++ compiler from Red Hat
Developer Toolset, type:

~]$ scl enable devtoolset-6 'g++ -o hello hello.cpp'

This creates a new binary file called hello in the current working directory.

Chapt er 2 . GNU Compiler Collect ion (GCC)

25

2.2.3. Running a C++ Program

When g++ compiles a program, it creates an executable binary file. To run this program on the
command line, change to the directory with the executable file and type:

./file_name

Example 2.4 . Running a C+ + Program on the Command Line

Assuming that you have successfully compiled the hello binary file as shown in Example 2.3,
“Compiling a C++ Program on the Command Line” , you can run it by typing the following at a
shell prompt:

~]$./hello
Hello, World!

2.2.4 . C++ Compat ibilit y

All compilers from Red Hat Enterprise Linux versions 5, 6, and 7 and from Red Hat Developer Toolset
versions 1, 2, 3, and 4 in any -std mode are compatible with any other of those compilers in C++98
mode. A compiler in C++11 or C++14 mode is only guaranteed to be compatible with another compiler
in C++11 or C++14 mode if they are from the same release series (for example from Red Hat
Developer Toolset 4.x).

2.2 .4 .1 . C++ ABI

Because the upstream GCC community development does not guarantee C++11 ABI compatibility
across major versions of GCC, the same applies to use of C++11 with Red Hat Developer Toolset.
Consequently, using the -std=c++11 option is supported in Red Hat Developer Toolset 3.x only
when all C++ objects compiled with that flag have been built using the same major version of Red Hat
Developer Toolset. The mixing of objects, binaries and libraries, built by the Red Hat
Enterprise Linux 6 or 7 system toolchain GCC using the -std=c++0x or -std=gnu++0x flags, with
those built with the -std=c++11 or -std=gnu++11 flags using the GCC in Red Hat
Developer Toolset is explicitly not supported.

As later major versions of Red Hat Developer Toolset may use a later major release of GCC, forward-
compatibility of objects, binaries, and libraries built with the -std=c++11 or -std=gnu++11
options cannot be guaranteed, and so is not supported.

The default language standard setting for Red Hat Developer Toolset is C++98. Any C++98-
compliant binaries or libraries built in this default mode (or explicitly with -std=c++98) can be
freely mixed with binaries and shared libraries built by the Red Hat Enterprise Linux 6 or 7 system
toolchain GCC. Red Hat recommends use of this default -std=c++98 mode for production software
development.

Important

Use of C++11 features in your application requires careful consideration of the above ABI
compatibility information.

Aside from the C++11 ABI, discussed above, the Red Hat Enterprise Linux Application Compatibility

User Guide

26

http://www.redhat.com/f/pdf/rhel/RHEL6_App_Compatibility_WP.pdf

Specification is unchanged for Red Hat Developer Toolset. When mixing objects built with Red Hat
Developer Toolset with those built with the Red Hat Enterprise Linux 6 or 7 toolchain (particularly
.o /.a files), the Red Hat Developer Toolset toolchain should be used for any linkage. This ensures
any newer library features provided only by Red Hat Developer Toolset are resolved at link-time.

A new standard mangling for SIMD vector types has been added to avoid name clashes on systems
with vectors of varying length. By default the compiler still uses the old mangling, but emits aliases
with the new mangling on targets that support strong aliases. -Wabi will now display a warning
about code that uses the old mangling.

2.3. GNU Fort ran Compiler

2.3.1. Installing the Fort ran Compiler

In Red Hat Developer Toolset, the GNU Fortran compiler is provided by the devtoolset-6-gcc-gfortran
package and is automatically installed with devtoolset-6-toolchain as described in Section 1.5,
“ Installing Red Hat Developer Toolset” .

2.3.2. Using the Fort ran Compiler

To compile a Fortran program on the command line, run the gfortran compiler as follows:

scl enable devtoolset-6 'gfortran -o output_file source_file...'

This creates a binary file named output_file in the current working directory. If the -o option is omitted,
the compiler creates a file named a.out by default.

When you are working on a project that consists of several source files, it is common to compile an
object file for each of the source files first and then link these object files together. This way, when you
change a single source file, you can recompile only this file without having to compile the entire
project. To compile an object file on the command line, run the following command:

scl enable devtoolset-6 'gfortran -o object_file -c source_file'

This creates an object file named object_file. If the -o option is omitted, the compiler creates a file
named after the source file with the .o file extension. To link object files together and create a binary
file, run:

scl enable devtoolset-6 'gfortran -o output_file object_file...'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset gfortran as default:

scl enable devtoolset-6 'bash'

Chapt er 2 . GNU Compiler Collect ion (GCC)

27

Note

To verify the version of gfortran you are using at any point, type the following at a shell
prompt:

which gfortran

Red Hat Developer Toolset's gfortran executable path will begin with /opt. Alternatively,
you can use the following command to confirm that the version number matches that for
Red Hat Developer Toolset gfortran:

gfortran -v

Important

Some newer library features are statically linked into applications built with Red Hat
Developer Toolset to support execution on multiple versions of Red Hat Enterprise Linux. This
adds a small additional security risk as normal Red Hat Enterprise Linux errata would not
change this code. If the need for developers to rebuild their applications due to such an issue
arises, Red Hat will signal this via a security erratum. Developers are strongly advised not to
statically link their entire application for the same reasons.

Example 2.5. Compiling a Fort ran Program on the Command Line

Consider a source file named hello.f with the following contents:

program hello
 print *, "Hello, World!"
end program hello

To compile this source code on the command line by using the gfortran compiler from Red Hat
Developer Toolset, type:

~]$ scl enable devtoolset-6 'gfortran -o hello hello.f'

This creates a new binary file called hello in the current working directory.

2.3.3. Running a Fort ran Program

When gfortran compiles a program, it creates an executable binary file. To run this program on the
command line, change to the directory with the executable file and type:

./file_name

Example 2.6 . Running a Fort ran Program on the Command Line

User Guide

28

Assuming that you have successfully compiled the hello binary file as shown in Example 2.5,
“Compiling a Fortran Program on the Command Line” , you can run it by typing the following at a
shell prompt:

~]$./hello
 Hello, World!

2.4 . Addit ional Resources

A detailed description of the GNU Compiler Collections and its features is beyond the scope of this
book. For more information, see the resources listed below.

Installed Documentat ion

gcc(1) — The manual page for the gcc compiler provides detailed information on its usage; with
few exceptions, g++ accepts the same command line options as gcc. To display the manual
page for the version included in Red Hat Developer Toolset, type:

scl enable devtoolset-6 'man gcc'

gfort ran (1) — The manual page for the gfortran compiler provides detailed information on its
usage. To display the manual page for the version included in Red Hat Developer Toolset, type:

scl enable devtoolset-6 'man gfortran'

C++ Standard Library Documentation — Documentation on the C++ standard library can be
optionally installed by typing the following at a shell prompt as root:

yum install devtoolset-6-libstdc++-docs

Once installed, HTML documentation is available at /opt/rh/devtoolset-
6/root/usr/share/doc/devtoolset-6-libstdc++-docs-6.2.1/html/index.html .

Online Documentat ion

Red Hat Enterprise Linux 6 Developer Guide and Red Hat Enterprise Linux 7 Developer Guide —
The Developer Guides for Red Hat Enterprise Linux 6 and 7 provide in-depth information about
GCC .

Using the GNU Compiler Collection — The official GCC manual provides an in-depth description
of the GNU compilers and their usage.

The GNU C++ Library — The GNU C++ library documentation provides detailed information about
the GNU implementation of the standard C++ library.

The GNU Fortran Compiler — The GNU Fortran compiler documentation provides detailed
information on gfortran's usage.

See Also

Section A.3, “Changes in GCC” provides a list of bug fixes over the version of the GNU Compiler
Collect ion distributed in the previous release of Red Hat Developer Toolset.

Chapt er 2 . GNU Compiler Collect ion (GCC)

29

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Developer_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/index.html
http://gcc.gnu.org/onlinedocs/gcc-6.2.1/gcc/
http://gcc.gnu.org/onlinedocs/gcc-6.2.1/libstdc++/manual/
http://gcc.gnu.org/onlinedocs/gcc-6.2.1/gfortran/

Chapter 1, Red Hat Developer Toolset provides an overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 4, binutils explains how to use the binut ils , a collection of binary tools to inspect and
manipulate object files and binaries.

Chapter 5, elfutils explains how to use elfut ils , a collection of binary tools to inspect and
manipulate ELF files.

Chapter 6, dwz explains how to use dwz to optimize DWARF debugging information contained in
ELF shared libraries and ELF executables for size.

Chapter 7, GNU Debugger (GDB) provides information on how to debug programs written in C,
C++, and Fortran.

User Guide

30

Chapter 3. GNU make

The GNU make utility, commonly abbreviated make , is a tool for controlling the generation of
executables from source files. make automatically determines which parts of a complex program
have changed and need to be recompiled. make uses configuration files called Makefiles to control
the way programs are built.

Red Hat Developer Toolset is distributed with make 4 .1 . This version is more recent than the version
included in Red Hat Enterprise Linux and provides a number of bug fixes and enhancements.

3.1. Installing make

In Red Hat Developer Toolset, GNU make is provided by the devtoolset-6-make package and is
automatically installed with devtoolset-6-toolchain as described in Section 1.5, “ Installing Red Hat
Developer Toolset” .

3.2. Using make

To build a program without using a Makefile, run the make tool as follows:

scl enable devtoolset-6 'make source_file_without_extension'

This command makes use of implicit rules that are defined for a number of programming languages,
including C, C++, and Fortran. The result is a binary file named source_file in the current working
directory.

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset make as default:

scl enable devtoolset-6 'bash'

Note

To verify the version of make you are using at any point, type the following at a shell prompt:

which make

Red Hat Developer Toolset's make executable path will begin with /opt. Alternatively, you can
use the following command to confirm that the version number matches that for Red Hat
Developer Toolset make:

make -v

Example 3.1. Build ing a C Program Using make

Consider a source file named hello.c with the following contents:

Chapt er 3. GNU make

31

#include <stdio.h>

int main(int argc, char *argv[]) {
 printf("Hello, World!\n");
 return 0;
}

To build this source code using the implicit rules defined by the make utility from Red Hat
Developer Toolset, type:

~]$ scl enable devtoolset-6 'make hello'
cc hello.c -o hello

This creates a new binary file called hello in the current working directory.

3.3. Using Makefiles

To build complex programs that consist of a number of source files, make uses configuration files
called Makefiles that control how to compile the components of a program and build the final
executable. Makefiles can also contain instructions for cleaning the working directory, installing and
uninstalling program files, and other operations.

make automatically uses files named GNUmakefile, makefile, or Makefile in the current
directory. To specify another file name, use:

make -f make_file

Describing the details of Makefile syntax is beyond the scope of this guide. See GNU make, the
official GNU make manual, which provides an in-depth description of the GNU make utility,
Makefile syntax, and their usage.

The full make manual is also available in the Texinfo format as a part of your installation. To view
this manual, type:

~]$ scl enable devtoolset-6 'info make'

Example 3.2. Build ing a C Program Using a Makef ile

Consider the following universal Makefile named Makefile for building the simple C program
introduced in Example 3.1, “Building a C Program Using make” . The Makefile defines some
variables and specifies four rules, which consist of targets and their recipes. Note that the lines with
recipes must start with the TAB character:

CC=gcc
CFLAGS=-c -Wall
SOURCE=hello.c
OBJ=$(SOURCE:.c=.o)
EXE=hello

all: $(SOURCE) $(EXE)

$(EXE): $(OBJ)

User Guide

32

http://www.gnu.org/software/make/manual/make.html

 $(CC) $(OBJ) -o $@

.c.o:
 $(CC) $(CFLAGS) $< -o $@

clean:
 rm -rf $(OBJ) $(EXE)

To build the hello.c program using this Makefile, run the make utility:

~]$ scl enable devtoolset-6 'make'
gcc -c -Wall hello.c -o hello.o
gcc hello.o -o hello

This creates a new object file hello.o and a new binary file called hello in the current working
directory.

To clean the working directory, run:

~]$ scl enable devtoolset-6 'make clean'
rm -rf hello.o hello

This removes the object and binary files from the working directory.

3.4 . Addit ional Resources

A detailed description of the GNU make tool and its features is beyond the scope of this book. For
more information, see the resources listed below.

Installed Documentat ion

make(1) — The manual page for the make utility provides information on its usage. To display the
manual page for the version included in Red Hat Developer Toolset, type:

scl enable devtoolset-6 'man make'

The full make manual, which includes detailed information about Makefile syntax, is also
available in the Texinfo format. To display the info manual for the version included in Red Hat
Developer Toolset, type:

scl enable devtoolset-6 'info make'

Online Documentat ion

GNU make — The official GNU make manual provides an in-depth description of the GNU make
utility, Makefile syntax, and their usage.

See Also

Chapter 1, Red Hat Developer Toolset provides an overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapt er 3. GNU make

33

http://www.gnu.org/software/make/manual/make.html

Chapter 2, GNU Compiler Collection (GCC) explains how to use the GNU Compiler Collect ion , a
portable compiler suite with support for a wide selection of programming languages.

Chapter 4, binutils explains how to use the binut ils , a collection of binary tools to inspect and
manipulate object files and binaries.

Chapter 5, elfutils explains how to use elfut ils , a collection of binary tools to inspect and
manipulate ELF files.

Chapter 6, dwz explains how to use dwz to optimize DWARF debugging information contained in
ELF shared libraries and ELF executables for size.

Chapter 7, GNU Debugger (GDB) provides information on how to debug programs written in C,
C++, and Fortran.

User Guide

34

Chapter 4. binutils

binut ils is a collection of various binary tools, such as the GNU linker, GNU assembler, and
other utilities that allow you to inspect and manipulate object files and binaries. See Table 4.1, “Tools
Included in binutils for Red Hat Developer Toolset” for a complete list of binary tools that are
distributed with the Red Hat Developer Toolset version of binut ils .

Red Hat Developer Toolset is distributed with binut ils 2.27 . This version is more recent than the
version included in Red Hat Enterprise Linux and the previous release of Red Hat Developer Toolset
and provides bug fixes and enhancements.

Table 4 .1. Tools Included in b inut ils for Red Hat Developer Toolset

Name Descript ion
addr2line Translates addresses into file names and line numbers.
ar Creates, modifies, and extracts files from archives.
as The GNU assembler.
c++filt Decodes mangled C++ symbols.
dwp Combines DWARF object files into a single DWARF package file.
elfedit Examines and edits ELF files.
gprof Display profiling information.
ld The GNU linker.
ld.bfd An alternative to the GNU linker.
ld.gold Another alternative to the GNU linker.
nm Lists symbols from object files.
objcopy Copies and translates object files.
objdump Displays information from object files.
ranlib Generates an index to the contents of an archive to make access to this

archive faster.
readelf Displays information about ELF files.
size Lists section sizes of object or archive files.
strings Displays printable character sequences in files.
strip Discards all symbols from object files.

4.1. Installing binut ils

In Red Hat Developer Toolset, binut ils are provided by the devtoolset-6-binutils package and are
automatically installed with devtoolset-6-toolchain as described in Section 1.5, “ Installing Red Hat
Developer Toolset” .

4.2. Using the GNU Assembler

To produce an object file from an assembly language program, run the as tool as follows:

scl enable devtoolset-6 'as [option...] -o object_file source_file'

This creates an object file named object_file in the current working directory.

Chapt er 4 . binut ils

35

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset as as default:

scl enable devtoolset-6 'bash'

Note

To verify the version of as you are using at any point, type the following at a shell prompt:

which as

Red Hat Developer Toolset's as executable path will begin with /opt. Alternatively, you can
use the following command to confirm that the version number matches that for Red Hat
Developer Toolset as:

as -v

4.3. Using the GNU Linker

To create an executable binary file or a library from object files, run the ld tool as follows:

scl enable devtoolset-6 'ld [option...] -o output_file object_file...'

This creates a binary file named output_file in the current working directory. If the -o option is omitted,
the compiler creates a file named a.out by default.

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset ld as default:

scl enable devtoolset-6 'bash'

Note

To verify the version of ld you are using at any point, type the following at a shell prompt:

which ld

Red Hat Developer Toolset's ld executable path will begin with /opt. Alternatively, you can
use the following command to confirm that the version number matches that for Red Hat
Developer Toolset ld :

ld -v

User Guide

36

4.4 . Using Other Binary Tools

The binut ils provide many binary tools other than a linker and an assembler. For a complete list of
these tools, see Table 4.1, “Tools Included in binutils for Red Hat Developer Toolset” .

To execute any of the tools that are a part of binutils, run the command as follows:

scl enable devtoolset-6 'tool [option...] file_name'

See Table 4.1, “Tools Included in binutils for Red Hat Developer Toolset” for a list of tools that are
distributed with binut ils . For example, to use the objdump tool to inspect an object file, type:

scl enable devtoolset-6 'objdump [option...] object_file'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset binary tools as default:

scl enable devtoolset-6 'bash'

Note

To verify the version of binut ils you are using at any point, type the following at a shell
prompt:

which objdump

Red Hat Developer Toolset's objdump executable path will begin with /opt. Alternatively, you
can use the following command to confirm that the version number matches that for Red Hat
Developer Toolset objdump:

objdump -v

4.5. Addit ional Resources

A detailed description of binut ils is beyond the scope of this book. For more information, see the
resources listed below.

Installed Documentat ion

as(1), ld(1), addr2line(1), ar(1), c++filt(1), dwp(1), elfedit(1), gprof(1), nm(1), objcopy(1),
objdump(1), ranlib(1), readelf(1), size(1), strings(1), strip(1), — Manual pages for various
binut ils tools provide more information about their respective usage. To display a manual page
for the version included in Red Hat Developer Toolset, type:

scl enable devtoolset-6 'man tool'

Chapt er 4 . binut ils

37

Online Documentat ion

Documentation for binutils — The binut ils documentation provides an in-depth description of
the binary tools and their usage.

See Also

Section A.1, “Changes in binutils” provides a comprehensive list of features and improvements
over the Red Hat Enterprise Linux version of binut ils and the version distributed in the previous
release of Red Hat Developer Toolset.

Chapter 1, Red Hat Developer Toolset provides an overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 5, elfutils explains how to use elfut ils , a collection of binary tools to inspect and
manipulate ELF files.

Chapter 2, GNU Compiler Collection (GCC) provides information on how to compile programs
written in C, C++, and Fortran.

User Guide

38

http://sourceware.org/binutils/docs-2.27/

Chapter 5. elfutils

elfut ils is a collection of various binary tools, such as eu-objdump, eu-readelf, and other
utilities that allow you to inspect and manipulate ELF files. See Table 5.1, “Tools Included in elfutils
for Red Hat Developer Toolset” for a complete list of binary tools that are distributed with the Red Hat
Developer Toolset version of elfut ils .

Red Hat Developer Toolset is distributed with elfut ils 0.16 7 . This version is more recent than the
version included the previous release of Red Hat Developer Toolset and provides some bug fixes
and enhancements.

Table 5.1. Tools Included in elfu t ils for Red Hat Developer Toolset

Name Descript ion
eu-addr2line Translates addresses into file names and line numbers.
eu-ar Creates, modifies, and extracts files from archives.
eu-elfcmp Compares relevant parts of two ELF files for equality.
eu-elflint Verifies that ELF files are compliant with the generic ABI (gABI) and

processor-specific supplement ABI (psABI) specification.
eu-findtextrel Locates the source of text relocations in files.
eu-make-debug-
archive

Creates an offline archive for debugging.

eu-nm Lists symbols from object files.
eu-objdump Displays information from object files.
eu-ranlib Generates an index to the contents of an archive to make access to this

archive faster.
eu-readelf Displays information about ELF files.
eu-size Lists section sizes of object or archive files.
eu-stack A new utility for unwinding processes and cores.
eu-strings Displays printable character sequences in files.
eu-strip Discards all symbols from object files.
eu-unstrip Combines stripped files with separate symbols and debug information.

5.1. Installing elfut ils

In Red Hat Developer Toolset, elfut ils is provided by the devtoolset-6-elfutils package and is
automatically installed with devtoolset-6-toolchain as described in Section 1.5, “ Installing Red Hat
Developer Toolset” .

5.2. Using elfut ils

To execute any of the tools that are part of elfut ils , run the command as follows:

scl enable devtoolset-6 'tool [option...] file_name'

See Table 5.1, “Tools Included in elfutils for Red Hat Developer Toolset” for a list of tools that are
distributed with elfut ils . For example, to use the eu-objdump tool to inspect an object file, type:

scl enable devtoolset-6 'eu-objdump [option...] object_file'

Chapt er 5. elfut ils

39

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset binary tools as default:

scl enable devtoolset-6 'bash'

Note

To verify the version of elfut ils you are using at any point, type the following at a shell
prompt:

which eu-objdump

Red Hat Developer Toolset's eu-objdump executable path will begin with /opt. Alternatively,
you can use the following command to confirm that the version number matches that for
Red Hat Developer Toolset eu-objdump:

eu-objdump -V

5.3. Addit ional Resources

A detailed description of elfut ils is beyond the scope of this book. For more information, see the
resources listed below.

See Also

Section A.2, “Changes in elfutils” provides a comprehensive list of features and improvements
over the version distributed in the previous release of Red Hat Developer Toolset.

Chapter 1, Red Hat Developer Toolset provides an overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 2, GNU Compiler Collection (GCC) provides information on how to compile programs
written in C, C++, and Fortran.

Chapter 4, binutils explains how to use the binut ils , a collection of binary tools to inspect and
manipulate object files and binaries.

Chapter 6, dwz explains how to use dwz to optimize DWARF debugging information contained in
ELF shared libraries and ELF executables for size.

User Guide

4 0

Chapter 6. dwz

dwz is a command line tool that attempts to optimize DWARF debugging information contained in
ELF shared libraries and ELF executables for size. To do so, dwz replaces DWARF information
representation with equivalent smaller representation where possible and reduces the amount of
duplication by using techniques from Appendix E of the DWARF Standard.

Red Hat Developer Toolset is distributed with dwz 0.12 .

6.1. Installing dwz

In Red Hat Developer Toolset, the dwz utility is provided by the devtoolset-6-dwz package and is
automatically installed with devtoolset-6-toolchain as described in Section 1.5, “ Installing Red Hat
Developer Toolset” .

6.2. Using dwz

To optimize DWARF debugging information in a binary file, run the dwz tool as follows:

scl enable devtoolset-6 'dwz [option...] file_name'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset dwz as default:

scl enable devtoolset-6 'bash'

Note

To verify the version of dwz you are using at any point, type the following at a shell prompt:

which dwz

Red Hat Developer Toolset's dwz executable path will begin with /opt. Alternatively, you can
use the following command to confirm that the version number matches that for Red Hat
Developer Toolset dwz:

dwz -v

6.3. Addit ional Resources

A detailed description of dwz and its features is beyond the scope of this book. For more information,
see the resources listed below.

Installed Documentat ion

Chapt er 6 . dwz

4 1

http://www.dwarfstd.org/doc/DWARF4.pdf

dwz(1) — The manual page for the dwz utility provides detailed information on its usage. To
display the manual page for the version included in Red Hat Developer Toolset, type:

scl enable devtoolset-6 'man dwz'

See Also

Chapter 1, Red Hat Developer Toolset provides an overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 2, GNU Compiler Collection (GCC) provides information on how to compile programs
written in C, C++, and Fortran.

Chapter 4, binutils explains how to use the binut ils , a collection of binary tools to inspect and
manipulate object files and binaries.

Chapter 5, elfutils explains how to use elfut ils , a collection of binary tools to inspect and
manipulate ELF files.

User Guide

4 2

Part III. Debugging Tools

Part III. Debugging T ools

4 3

Chapter 7. GNU Debugger (GDB)

The GNU Debugger, commonly abbreviated as GDB , is a command line tool that can be used to
debug programs written in various programming languages. It allows you to inspect memory within
the code being debugged, control the execution state of the code, detect the execution of particular
sections of code, and much more.

Red Hat Developer Toolset is distributed with GDB 7.10 . This version is more recent than the version
included in Red Hat Enterprise Linux and the previous release of Red Hat Developer Toolset and
provides some enhancements and numerous bug fixes.

7.1. Installing the GNU Debugger

In Red Hat Developer Toolset, the GNU Debugger is provided by the devtoolset-6-gdb package and
is automatically installed with devtoolset-6-toolchain as described in Section 1.5, “ Installing Red Hat
Developer Toolset” .

7.2. Preparing a Program for Debugging

Compiling Programs with Debugging Informat ion

To compile a C program with debugging information that can be read by the GNU Debugger, make
sure the gcc compiler is run with the -g option. To do so on the command line, use a command in
the following form:

scl enable devtoolset-6 'gcc -g -o output_file input_file...'

Similarly, to compile a C++ program with debugging information, run:

scl enable devtoolset-6 'g++ -g -o output_file input_file...'

Example 7.1. Compiling a C Program With Debugging In format ion

Consider a source file named fibonacci.c that has the following contents:

#include <stdio.h>
#include <limits.h>

int main (int argc, char *argv[]) {
 unsigned long int a = 0;
 unsigned long int b = 1;
 unsigned long int sum;

 while (b < LONG_MAX) {
 printf("%ld ", b);
 sum = a + b;
 a = b;
 b = sum;

User Guide

4 4

 }

 return 0;
}

To compile this program on the command line using GCC from Red Hat Developer Toolset with
debugging information for the GNU Debugger, type:

~]$ scl enable devtoolset-6 'gcc -g -o fibonacci fibonacci.c'

This creates a new binary file called fibonacci in the current working directory.

Installing Debugging Informat ion for Exist ing Packages

To install debugging information for a package that is already installed on the system, type the
following at a shell prompt as root:

debuginfo-install package_name

Note that the yum-utils package must be installed for the debuginfo-install utility to be available
on your system.

Example 7.2. Installing Debugging In format ion for the g libc Package

To install debugging information for the glibc package, type:

~]# debuginfo-install glibc
Loaded plugins: product-id, refresh-packagekit, subscription-manager
--> Running transaction check
---> Package glibc-debuginfo.x86_64 0:2.17-105.el7 will be installed
...

7.3. Running the GNU Debugger

To run the GNU Debugger on a program you want to debug, type the following at a shell prompt:

scl enable devtoolset-6 'gdb file_name'

This starts the gdb debugger in interactive mode and displays the default prompt, (gdb). To quit the
debugging session and return to the shell prompt, run the following command at any time:

quit

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset gdb as default:

scl enable devtoolset-6 'bash'

Chapt er 7 . GNU Debugger (GDB)

4 5

Note

To verify the version of gdb you are using at any point, type the following at a shell prompt:

which gdb

Red Hat Developer Toolset's gdb executable path will begin with /opt. Alternatively, you can
use the following command to confirm that the version number matches that for Red Hat
Developer Toolset gdb:

gdb -v

Example 7.3. Running the gdb Ut ility on the f ibonacci Binary File

Assuming that you have successfully compiled the fibonacci binary file as shown in
Example 7.1, “Compiling a C Program With Debugging Information” , you can start debugging it
with gdb by typing the following at a shell prompt:

~]$ scl enable devtoolset-6 'gdb fibonacci'
GNU gdb (GDB) Red Hat Enterprise Linux (7.10-20.el7)
Copyright (C) 2015 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later
<http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show
copying"
and "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word".
(gdb)

7.4 . List ing Source Code

To view the source code of the program you are debugging, run the following command:

list

Before you start the execution of the program you are debugging, gdb displays the first ten lines of
the source code, and any subsequent use of this command lists another ten lines. Once you start the
execution, gdb displays the lines that are surrounding the line on which the execution stops,
typically when you set a breakpoint.

You can also display the code that is surrounding a particular line. To do so, run the command in
the following form:

User Guide

4 6

list [file_name:]line_number

Similarly, to display the code that is surrounding the beginning of a particular function, run:

list [file_name:]function_name

Note that you can change the number of lines the list command displays by running the following
command:

set listsize number

Example 7.4 . List ing the Source Code of the f ibonacci Binary File

The fibonacci.c file listed in Example 7.1, “Compiling a C Program With Debugging
Information” has exactly 17 lines. Assuming that you have compiled it with debugging information
and you want the gdb utility to be capable of listing the entire source code, you can run the
following command to change the number of listed lines to 20:

(gdb) set listsize 20

You can now display the entire source code of the file you are debugging by running the list
command with no additional arguments:

(gdb) list
1 #include <stdio.h>
2 #include <limits.h>
3
4 int main (int argc, char *argv[]) {
5 unsigned long int a = 0;
6 unsigned long int b = 1;
7 unsigned long int sum;
8
9 while (b < LONG_MAX) {
10 printf("%ld ", b);
11 sum = a + b;
12 a = b;
13 b = sum;
14 }
15
16 return 0;
17 }

7.5. Set t ing Breakpoints

Set t ing a New Breakpoint

To set a new breakpoint at a certain line, run the following command:

break [file_name:]line_number

Chapt er 7 . GNU Debugger (GDB)

4 7

You can also set a breakpoint on a certain function:

break [file_name:]function_name

Example 7.5. Set t ing a New Breakpoint

Assuming that you have compiled the fibonacci.c file listed in Example 7.1, “Compiling a C
Program With Debugging Information” with debugging information, you can set a new breakpoint
at line 10 by running the following command:

(gdb) break 10
Breakpoint 1 at 0x4004e5: file fibonacci.c, line 10.

List ing Breakpoints

To display a list of currently set breakpoints, run the following command:

info breakpoints

Example 7.6 . List ing Breakpoints

Assuming that you have followed the instructions in Example 7.5, “Setting a New Breakpoint” , you
can display the list of currently set breakpoints by running the following command:

(gdb) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y 0x00000000004004e5 in main at
fibonacci.c:10

Delet ing Exist ing Breakpoints

To delete a breakpoint that is set at a certain line, run the following command:

clear line_number

Similarly, to delete a breakpoint that is set on a certain function, run:

clear function_name

Example 7.7. Delet ing an Exist ing Breakpoint

Assuming that you have compiled the fibonacci.c file listed in Example 7.1, “Compiling a C
Program With Debugging Information” with debugging information, you can set a new breakpoint
at line 7 by running the following command:

(gdb) break 7
Breakpoint 2 at 0x4004e3: file fibonacci.c, line 7.

User Guide

4 8

To remove this breakpoint, type:

(gdb) clear 7
Deleted breakpoint 2

7.6. Start ing Execut ion

To start an execution of the program you are debugging, run the following command:

run

If the program accepts any command line arguments, you can provide them as arguments to the run
command:

run argument…

The execution stops when the first breakpoint (if any) is reached, when an error occurs, or when the
program terminates.

Example 7.8. Execut ing the f ibonacci Binary File

Assuming that you have followed the instructions in Example 7.5, “Setting a New Breakpoint” , you
can execute the fibonacci binary file by running the following command:

(gdb) run
Starting program: /home/john/fibonacci

Breakpoint 1, main (argc=1, argv=0x7fffffffe4d8) at fibonacci.c:10
10 printf("%ld ", b);

7.7. Displaying Current Values

The gdb utility allows you to display the value of almost anything that is relevant to the program,
from a variable of any complexity to a valid expression or even a library function. However, the most
common task is to display the value of a variable.

To display the current value of a certain variable, run the following command:

print variable_name

Example 7.9 . Displaying the Current Values of Variables

Assuming that you have followed the instructions in Example 7.8, “Executing the fibonacci Binary
File” and the execution of the fibonacci binary stopped after reaching the breakpoint at line 10,
you can display the current values of variables a and b as follows:

Chapt er 7 . GNU Debugger (GDB)

4 9

(gdb) print a
$1 = 0
(gdb) print b
$2 = 1

7.8. Cont inuing Execut ion

To resume the execution of the program you are debugging after it reached a breakpoint, run the
following command:

continue

The execution stops again when another breakpoint is reached. To skip a certain number of
breakpoints (typically when you are debugging a loop), you can run the continue command in the
following form:

continue number

The gdb utility also allows you to stop the execution after executing a single line of code. To do so,
run:

step

Finally, you can execute a certain number of lines by using the step command in the following form:

step number

Example 7.10. Cont inuing the Execut ion of the f ibonacci Binary File

Assuming that you have followed the instructions in Example 7.8, “Executing the fibonacci Binary
File” , and the execution of the fibonacci binary stopped after reaching the breakpoint at line 10,
you can resume the execution by running the following command:

(gdb) continue
Continuing.

Breakpoint 1, main (argc=1, argv=0x7fffffffe4d8) at fibonacci.c:10
10 printf("%ld ", b);

The execution stops the next time the breakpoint is reached. To execute the next three lines of
code, type:

(gdb) step 3
13 b = sum;

This allows you to verify the current value of the sum variable before it is assigned to b:

(gdb) print sum
$3 = 2

User Guide

50

7.9. Addit ional Resources

A detailed description of the GNU Debugger and all its features is beyond the scope of this book.
For more information, see the resources listed below.

Online Documentat ion

Red Hat Enterprise Linux 6 Developer Guide and Red Hat Enterprise Linux 7 Developer Guide —
The Developer Guides for Red Hat Enterprise Linux 6 and 7 provide more information on the GNU
Debugger and debugging.

GDB Documentation — The official GDB documentation includes the GDB User Manual and other
reference material.

See Also

Section A.4, “Changes in GDB” provides a comprehensive list of features and improvements over
the Red Hat Enterprise Linux system version of the GNU Debugger and the version distributed in
the previous release of Red Hat Developer Toolset.

Chapter 1, Red Hat Developer Toolset provides an overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 2, GNU Compiler Collection (GCC) provides further information on how to compile
programs written in C, C++, and Fortran.

Chapter 8, strace documents how to use the st race utility to monitor system calls that a program
uses and signals it receives.

Chapter 10, memstomp documents how to use the memstomp utility to identify calls to library
functions with overlapping memory regions that are not allowed by various standards.

Chapt er 7 . GNU Debugger (GDB)

51

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Developer_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/index.html
http://www.gnu.org/software/gdb/documentation/

Chapter 8. strace

st race is a diagnostic and debugging tool for the command line that can be used to trace system
calls that are made and received by a running process. It records the name of each system call, its
arguments, and its return value, as well as signals received by the process and other interactions
with the kernel, and prints this record to standard error output or a selected file.

Red Hat Developer Toolset is distributed with st race 4 .12 .

8.1. Installing st race

In Red Hat Enterprise Linux, the strace utility is provided by the devtoolset-6-strace package and is
automatically installed with devtoolset-6-toolchain as described in Section 1.5, “ Installing Red Hat
Developer Toolset” .

8.2. Using st race

To run the strace utility on a program you want to analyze, type the following at a shell prompt:

scl enable devtoolset-6 'strace program [argument...]'

Replace program with the name of the program you want to analyze, and argument with any command
line options and arguments you want to supply to this program. Alternatively, you can run the utility
on an already running process by using the -p command line option followed by the process ID:

scl enable devtoolset-6 'strace -p process_id'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset strace as default:

scl enable devtoolset-6 'bash'

Note

To verify the version of strace you are using at any point, type the following at a shell prompt:

which strace

Red Hat Developer Toolset's strace executable path will begin with /opt. Alternatively, you
can use the following command to confirm that the version number matches that for Red Hat
Developer Toolset strace:

strace -V

8.2.1. Redirect ing Output to a File

By default, strace prints the name of each system call, its arguments and the return value to

User Guide

52

standard error output. To redirect this output to a file, use the -o command line option followed by
the file name:

scl enable devtoolset-6 'strace -o file_name program [argument...]'

Replace file_name with the name of the file.

Example 8.1. Redirect ing Output to a File

Consider a slightly modified version of the fibonacci file from Example 7.1, “Compiling a C
Program With Debugging Information” . This executable file displays the Fibonacci sequence and
optionally allows you to specify how many members of this sequence to list. To run the strace
utility on this file and redirect the trace output to fibonacci.log , type:

~]$ scl enable devtoolset-6 'strace -o fibonacci.log ./fibonacci 20'
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765

This creates a new plain-text file called fibonacci.log in the current working directory.

8.2.2. T racing Selected System Calls

To trace only a selected set of system calls, run the strace utility with the -e command line option:

scl enable devtoolset-6 'strace -e expression program [argument...]'

Replace expression with a comma-separated list of system calls to trace or any of the keywords listed
in Table 8.1, “Commonly Used Values of the -e Option” . For a detailed description of all available
values, see the strace(1) manual page.

Table 8.1. Commonly Used Values of the -e Opt ion

Value Descript ion
file System calls that accept a file name as an argument.
process System calls that are related to process management.
network System calls that are related to networking.
signal System calls that are related to signal management.
ipc System calls that are related to inter-process communication (IPC).
desc System calls that are related to file descriptors.

Example 8.2. Tracing Selected System Calls

Consider the employee file from Example 10.1, “Using memstomp” . To run the strace utility on
this executable file and trace only the mmap and munmap system calls, type:

~]$ scl enable devtoolset-6 'strace -e mmap,munmap ./employee'
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1,
0) = 0x7f896c744000
mmap(NULL, 61239, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f896c735000
mmap(0x3146a00000, 3745960, PROT_READ|PROT_EXEC,
MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x3146a00000
mmap(0x3146d89000, 20480, PROT_READ|PROT_WRITE,

Chapt er 8 . st race

53

MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x189000) = 0x3146d89000
mmap(0x3146d8e000, 18600, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x3146d8e000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1,
0) = 0x7f896c734000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1,
0) = 0x7f896c733000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1,
0) = 0x7f896c732000
munmap(0x7f896c735000, 61239) = 0
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1,
0) = 0x7f896c743000
John,john@example.comDoe,
+++ exited with 0 +++

8.2.3. Displaying T ime Stamps

To prefix each line of the trace with the exact time of the day in hours, minutes, and seconds, run the
strace utility with the -t command line option:

scl enable devtoolset-6 'strace -t program [argument...]'

To also display milliseconds, supply the -t option twice:

scl enable devtoolset-6 'strace -tt program [argument...]'

To prefix each line of the trace with the time required to execute the respective system call, use the -r
command line option:

scl enable devtoolset-6 'strace -r program [argument...]'

Example 8.3. Displaying T ime Stamps

Consider an executable file named pwd . To run the strace utility on this file and include time
stamps in the output, type:

~]$ scl enable devtoolset-6 'strace -tt pwd'
19:43:28.011815 execve("./pwd", ["./pwd"], [/* 36 vars */]) = 0
19:43:28.012128 brk(0) = 0xcd3000
19:43:28.012174 mmap(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fc869cb0000
19:43:28.012427 open("/etc/ld.so.cache", O_RDONLY) = 3
19:43:28.012446 fstat(3, {st_mode=S_IFREG|0644, st_size=61239, ...}) =
0
19:43:28.012464 mmap(NULL, 61239, PROT_READ, MAP_PRIVATE, 3, 0) =
0x7fc869ca1000
19:43:28.012483 close(3) = 0
...
19:43:28.013410 +++ exited with 0 +++

User Guide

54

8.2.4 . Displaying a Summary

To display a summary of how much time was required to execute each system call, how many times
were these system calls executed, and how many errors were encountered during their execution, run
the strace utility with the -c command line option:

scl enable devtoolset-6 'strace -c program [argument...]'

Example 8.4 . Displaying a Summary

Consider an executable file named lsblk. To run the strace utility on this file and display a
trace summary, type:

~]$ scl enable devtoolset-6 'strace -c lsblk > /dev/null'
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 80.88 0.000055 1 106 16 open
 19.12 0.000013 0 140 munmap
 0.00 0.000000 0 148 read
 0.00 0.000000 0 1 write
 0.00 0.000000 0 258 close
 0.00 0.000000 0 37 2 stat
...
------ ----------- ----------- --------- --------- ----------------
100.00 0.000068 1790 35 total

8.3. Addit ional Resources

A detailed description of st race and its features is beyond the scope of this book. For more
information, see the resources listed below.

Installed Documentat ion

strace(1) — The manual page for the strace utility provides detailed information about its usage.
To display the manual page for the version included in Red Hat Developer Toolset, type:

scl enable devtoolset-6 'man strace'

See Also

Chapter 1, Red Hat Developer Toolset provides an overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 9, ltrace provides information on how to trace program library calls using the lt race tool.

Chapter 7, GNU Debugger (GDB) provides information on how to debug programs written in C,
C++, and Fortran.

Chapter 10, memstomp documents how to use the memstomp utility to identify calls to library
functions with overlapping memory regions that are not allowed by various standards.

Chapt er 8 . st race

55

Chapter 9. ltrace

lt race is a diagnostic and debugging tool for the command line that can be used to display calls
that are made to shared libraries. It uses the dynamic library hooking mechanism, which prevents it
from tracing calls to statically linked libraries. lt race also displays return values of the library calls.
The output is printed to standard error output or to a selected file.

Red Hat Developer Toolset is distributed with lt race 0.7.9 1 . While the base version lt race remains
the same as in the previous release of Red Hat Developer Toolset, various enhancements and bug
fixes have ported.

9.1. Installing lt race

In Red Hat Enterprise Linux, the ltrace utility is provided by the devtoolset-6-ltrace package and is
automatically installed with devtoolset-6-toolchain as described in Section 1.5, “ Installing Red Hat
Developer Toolset” .

9.2. Using lt race

To run the ltrace utility on a program you want to analyze, type the following at a shell prompt:

scl enable devtoolset-6 'ltrace program [argument...]'

Replace program with the name of the program you want to analyze, and argument with any command
line options and arguments you want to supply to this program. Alternatively, you can run the utility
on an already running process by using the -p command line option followed by the process ID:

scl enable devtoolset-6 'ltrace -p process_id'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset ltrace as default:

scl enable devtoolset-6 'bash'

Note

To verify the version of ltrace you are using at any point, type the following at a shell
prompt:

which ltrace

Red Hat Developer Toolset's ltrace executable path will begin with /opt. Alternatively, you
can use the following command to confirm that the version number matches that for Red Hat
Developer Toolset ltrace:

ltrace -V

9.2.1. Redirect ing Output to a File

User Guide

56

9.2.1. Redirect ing Output to a File

By default, ltrace prints the name of each system call, its arguments and the return value to
standard error output. To redirect this output to a file, use the -o command line option followed by
the file name:

scl enable devtoolset-6 'ltrace -o file_name program [argument...]'

Replace file_name with the name of the file.

Example 9 .1. Redirect ing Output to a File

Consider a slightly modified version of the fibonacci file from Example 7.1, “Compiling a C
Program With Debugging Information” . This executable file displays the Fibonacci sequence and
optionally allows you to specify how many members of this sequence to list. To run the ltrace
utility on this file and redirect the trace output to fibonacci.log , type:

~]$ scl enable devtoolset-6 'ltrace -o fibonacci.log ./fibonacci
20'
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765

This creates a new plain-text file called fibonacci.log in the current working directory.

9.2.2. T racing Selected Library Calls

To trace only a selected set of library calls, run the ltrace utility with the -e command line option:

scl enable devtoolset-6 'ltrace -e expression program [argument...]'

Replace expression with a chain of rules to specify the library calls to trace. The rules can consist of
patterns that identify symbol names (such as malloc or free) and patterns that identify library
SONAMEs (such as libc.so). For example, to trace call to the malloc and free function but to
omit those that are done by the libc library, use:

scl enable devtoolset-6 'ltrace -e malloc+free-@libc.so* program'

Example 9 .2. Tracing Selected Library Calls

Consider the ls command. To run the ltrace utility on this program and trace only the opendir,
readdir, and closedir function calls, type:

~]$ scl enable devtoolset-6 'ltrace -e opendir+readdir+closedir ls'
ls->opendir(".") = { 3 }
ls->readdir({ 3 }) = { 61533, "." }
ls->readdir({ 3 }) = { 131, ".." }
ls->readdir({ 3 }) = { 67185100, "BUILDROOT" }
ls->readdir({ 3 }) = { 202390772, "SOURCES" }
ls->readdir({ 3 }) = { 60249, "SPECS" }
ls->readdir({ 3 }) = { 67130110, "BUILD" }
ls->readdir({ 3 }) = { 136599168, "RPMS" }
ls->readdir({ 3 }) = { 202383274, "SRPMS" }

Chapt er 9 . lt race

57

ls->readdir({ 3 }) = nil
ls->closedir({ 3 }) = 0
BUILD BUILDROOT RPMS SOURCES SPECS SRPMS
+++ exited (status 0) +++

For a detailed description of available filter expressions, see the ltrace(1) manual page.

9.2.3. Displaying T ime Stamps

To prefix each line of the trace with the exact time of the day in hours, minutes, and seconds, run the
ltrace utility with the -t command line option:

scl enable devtoolset-6 'ltrace -t program [argument...]'

To also display milliseconds, supply the -t option twice:

scl enable devtoolset-6 'ltrace -tt program [argument...]'

To prefix each line of the trace with the time required to execute the respective system call, use the -r
command line option:

scl enable devtoolset-6 'ltrace -r program [argument...]'

Example 9 .3. Displaying T ime Stamps

Consider the pwd command. To run the ltrace utility on this program and include time stamps in
the output, type:

~]$ scl enable devtoolset-6 'ltrace -tt pwd'
13:27:19.631371 __libc_start_main(["pwd"] <unfinished ...>
13:27:19.632240 getenv("POSIXLY_CORRECT") = nil
13:27:19.632520 strrchr("pwd", '/') = nil
13:27:19.632786 setlocale(LC_ALL, "") =
"en_US.UTF-8"
13:27:19.633220 bindtextdomain("coreutils", "/usr/share/locale") =
"/usr/share/locale"
13:27:19.633471 textdomain("coreutils") =
"coreutils"
...
13:27:19.637110 +++ exited (status 0) +++

9.2.4 . Displaying a Summary

To display a summary of how much time was required to execute each system call and how many
times were these system calls executed, run the ltrace utility with the -c command line option:

scl enable devtoolset-6 'ltrace -c program [argument...]'

Example 9 .4 . Displaying a Summary

User Guide

58

Consider the lsblk command. To run the ltrace utility on this program and display a trace
summary, type:

~]$ scl enable devtoolset-6 'ltrace -c lsblk > /dev/null'
% time seconds usecs/call calls function
------ ----------- ----------- --------- --------------------
 53.60 0.261644 261644 1 __libc_start_main
 4.48 0.021848 58 374 mbrtowc
 4.41 0.021524 57 374 wcwidth
 4.39 0.021409 57 374 __ctype_get_mb_cur_max
 4.38 0.021359 57 374 iswprint
 4.06 0.019838 74 266 readdir64
 3.21 0.015652 69 224 strlen
...
------ ----------- ----------- --------- --------------------
100.00 0.488135 3482 total

9.3. Addit ional Resources

A detailed description of lt race and its features is beyond the scope of this book. For more
information, see the resources listed below.

Installed Documentat ion

ltrace(1) — The manual page for the ltrace utility provides detailed information about its usage.
To display the manual page for the version included in Red Hat Developer Toolset, type:

scl enable devtoolset-6 'man ltrace'

Online Documentat ion

ltrace for RHEL 6 and 7 — This article on the Red Hat Developer Blog offers additional in-depth
information (including practical examples) on how to use lt race for application debugging.

See Also

Chapter 1, Red Hat Developer Toolset provides an overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 8, strace provides information on how to trace program system calls using the st race
tool.

Chapter 7, GNU Debugger (GDB) provides information on how to debug programs written in C,
C++, and Fortran.

Chapter 10, memstomp documents how to use the memstomp utility to identify calls to library
functions with overlapping memory regions that are not allowed by various standards.

Chapt er 9 . lt race

59

http://developerblog.redhat.com/2014/07/10/ltrace-for-rhel-6-and-7/

Chapter 10. memstomp

memstomp is a command line tool that can be used to identify function calls with overlapping
memory regions in situations when such an overlap is not permitted by various standards. It
intercepts calls to the library functions listed in Table 10.1, “Function Calls Inspected by memstomp”
and for each memory overlap, it displays a detailed backtrace to help you debug the problem.

Similarly to Valgrind , the memstomp utility inspects applications without the need to recompile them.
However, it is much faster than this tool and therefore serves as a convenient alternative to it.

Red Hat Developer Toolset is distributed with memstomp 0.1.5 .

Table 10.1. Funct ion Calls Inspected by memstomp

Funct ion Descript ion
memcpy Copies n bytes from one memory area to another and returns a pointer to

the second memory area.
memccpy Copies a maximum of n bytes from one memory area to another and stops

when a certain character is found. It either returns a pointer to the byte
following the last written byte, or NULL if the given character is not found.

mempcpy Copies n bytes from one memory area to another and returns a pointer to
the byte following the last written byte.

strcpy Copies a string from one memory area to another and returns a pointer to
the second string.

stpcpy Copies a string from one memory area to another and returns a pointer to
the terminating null byte of the second string.

strncpy Copies a maximum of n characters from one string to another and returns
a pointer to the second string.

stpncpy Copies a maximum of n characters from one string to another. It either
returns a pointer to the terminating null byte of the second string, or if the
string is not null-terminated, a pointer to the byte following the last written
byte.

strcat Appends one string to another while overwriting the terminating null byte
of the second string and adding a new one at its end. It returns a pointer
to the new string.

strncat Appends a maximum of n characters from one string to another while
overwriting the terminating null byte of the second string and adding a
new one at its end. It returns a pointer to the new string.

wmemcpy The wide-character equivalent of the memcpy() function that copies n wide
characters from one array to another and returns a pointer to the second
array.

wmempcpy The wide-character equivalent of the mempcpy() function that copies n
wide characters from one array to another and returns a pointer to the
byte following the last written wide character.

wcscpy The wide-character equivalent of the strcpy() function that copies a
wide-character string from one array to another and returns a pointer to
the second array.

wcsncpy The wide-character equivalent of the strncpy() function that copies a
maximum of n wide characters from one array to another and returns a
pointer to the second string.

User Guide

60

wcscat The wide-character equivalent of the strcat() function that appends one
wide-character string to another while overwriting the terminating null
byte of the second string and adding a new one at its end. It returns a
pointer to the new string.

wcsncat The wide-character equivalent of the strncat() function that appends a
maximum of n wide characters from one array to another while overwriting
the terminating null byte of the second wide-character string and adding
a new one at its end. It returns a pointer to the new string.

Funct ion Descript ion

10.1. Installing memstomp

In Red Hat Developer Toolset, the memstomp utility is provided by the devtoolset-6-memstomp
package and is automatically installed with devtoolset-6-toolchain as described in Section 1.5,
“ Installing Red Hat Developer Toolset” .

10.2. Using memstomp

To run the memstomp utility on a program you want to analyze, type the following at a shell prompt:

scl enable devtoolset-6 'memstomp program [argument...]'

To immediately terminate the analyzed program when a problem is detected, run the utility with the --
kill (or -k for short) command line option:

scl enable devtoolset-6 'memstomp --kill program [argument...]'

The use of the --kill option is especially recommended if you are analyzing a multi-threaded
program; the internal implementation of backtraces is not thread-safe and running the memstomp
utility on a multi-threaded program without this command line option can therefore produce
unreliable results.

Additionally, if you have compiled the analyzed program with the debugging information or this
debugging information is available to you, you can use the --debug-info (or -d) command line
option to produce a more detailed backtrace:

scl enable devtoolset-6 'memstomp --debug-info program [argument...]'

For detailed instructions on how to compile your program with the debugging information built in the
binary file, see Section 7.2, “Preparing a Program for Debugging” . For information on how to install
debugging information for any of the Red Hat Developer Toolset packages, see Section 1.5.4,
“ Installing Debugging Information” .

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset memstomp as default:

scl enable devtoolset-6 'bash'

Example 10.1. Using memstomp

Chapt er 1 0 . memst omp

61

In the current working directory, create a source file named employee.c with the following
contents:

#include <stdio.h>
#include <string.h>

#define BUFSIZE 80

int main(int argc, char *argv[]) {
 char employee[BUFSIZE] = "John,Doe,john@example.com";
 char name[BUFSIZE] = {0};
 char surname[BUFSIZE] = {0};
 char *email;
 size_t length;

 /* Extract the information: */
 memccpy(name, employee, ',', BUFSIZE);
 length = strlen(name);
 memccpy(surname, employee + length, ',', BUFSIZE);
 length += strlen(surname);
 email = employee + length;

 /* Compose the new entry: */
 strcat(employee, surname);
 strcpy(employee, name);
 strcat(employee, email);

 /* Print the result: */
 puts(employee);

 return 0;
}

Compile this program into a binary file named employee by using the following command:

~]$ scl enable devtoolset-6 'gcc -rdynamic -g -o employee
employee.c'

To identify erroneous function calls with overlapping memory regions, type:

~]$ scl enable devtoolset-6 'memstomp --debug-info ./employee'
memstomp: 0.1.4 successfully initialized for process employee (pid
14887).

strcat(dest=0x7fff13afc265, src=0x7fff13afc269, bytes=21) overlap for
employee(14887)
 ??:0 strcpy()
 ??:0 strcpy()
 ??:0 _Exit()
 ??:0 strcat()
 employee.c:26 main()
 ??:0 __libc_start_main()
 ??:0 _start()
John,john@example.comDoe,

User Guide

62

10.3. Addit ional Resources

A detailed description of memstomp and its features is beyond the scope of this book. For more
information, see the resources listed below.

Installed Documentat ion

memstomp(1) — The manual page for the memstomp utility provides detailed information about its
usage. To display the manual page for the version included in Red Hat Developer Toolset, type:

scl enable devtoolset-6 'man memstomp'

See Also

Chapter 1, Red Hat Developer Toolset provides an overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 7, GNU Debugger (GDB) provides information on how to debug programs written in C,
C++, and Fortran.

Chapter 8, strace documents how to use the strace utility to monitor system calls that a program
uses and signals it receives.

Chapter 12, Valgrind explains how to use Valgrind to profile applications and detect memory
errors and memory management problems, such as the use of uninitialized memory, improper
allocation and freeing of memory, and the use of improper arguments in system calls.

Chapt er 1 0 . memst omp

63

Part IV. Performance Monitoring Tools

User Guide

64

Chapter 11. SystemTap

SystemTap is a tracing and probing tool that allows users to monitor the activities of the entire
system without needing to instrument, recompile, install, and reboot. It is programmable with a
custom scripting language, which gives it expressiveness (to trace, filter, and analyze) and reach (to
look into the running kernel and applications).

SystemTap can monitor various types of events, such as function calls within the kernel or
applications, timers, tracepoints, performance counters, and so on. Some included example scripts
produce output similar to netstat, ps, top, and iostat, others include pretty-printed function
callgraph traces or tools for working around security bugs.

Red Hat Developer Toolset is distributed with SystemTap 3.0 . This version is more recent than the
version included in the previous release of Red Hat Developer Toolset and provides numerous bug
fixes and enhancements.

Table 11.1. Tools Dist ributed with SystemTap for Red Hat Developer Toolset

Name Descript ion
stap Translates probing instructions into C code, builds a kernel module, and

loads it into a running Linux kernel.
stapdyn The Dyninst backend for SystemTap .
staprun Loads, unloads, attaches to, and detaches from kernel modules built with

the stap utility.
stapsh Serves as a remote shell for SystemTap .
stap-prep Determines and—if possible—downloads the kernel information

packages that are required to run SystemTap .
stap-merge Merges per-CPU files. This script is automatically executed when the stap

utility is executed with the -b command line option.
stap-report Gathers important information about the system for the purpose of

reporting a bug in SystemTap .
stap-server A compile server, which listens for requests from stap clients.

11.1. Installing SystemTap

In Red Hat Developer Toolset, SystemTap is provided by the devtoolset-6-systemtap package and is
automatically installed with devtoolset-6-perftools as described in Section 1.5, “ Installing Red Hat
Developer Toolset” .

Note

The Red Hat Developer Toolset version of SystemTap is available for both Red Hat
Enterprise Linux 6 and Red Hat Enterprise Linux 7, but some new features are only offered by
the Red Hat Developer Toolset version of SystemTap for Red Hat Enterprise Linux 7.

In order to place instrumentation into the Linux kernel, SystemTap may also require installation of
additional packages with debugging information. To determine which packages to install, run the
stap-prep utility as follows:

scl enable devtoolset-6 'stap-prep'

Chapt er 1 1 . Syst emT ap

65

Note that if you execute this command as the root user, the utility automatically offers the packages
for installation. For more information on how to install these packages on your system, see the
Red Hat Enterprise Linux 6 SystemTap Beginners Guide or the Red Hat Enterprise Linux 7 SystemTap
Beginners Guide.

11.2. Using SystemTap

To execute any of the tools that are part of SystemTap , type the following at a shell prompt:

scl enable devtoolset-6 'tool [option...]'

See Table 11.1, “Tools Distributed with SystemTap for Red Hat Developer Toolset” for a list of tools
that are distributed with SystemTap . For example, to run the stap tool to build an instrumentation
module, type:

scl enable devtoolset-6 'stap [option...] argument...'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset SystemTap as default:

scl enable devtoolset-6 'bash'

Note

To verify the version of SystemTap you are using at any point, type the following at a shell
prompt:

which stap

Red Hat Developer Toolset's stap executable path will begin with /opt. Alternatively, you can
use the following command to confirm that the version number matches that for Red Hat
Developer Toolset SystemTap :

stap -V

11.3. Addit ional Resources

A detailed description of SystemTap and its features is beyond the scope of this book. For more
information, see the resources listed below.

Installed Documentat ion

stap(1) — The manual page for the stap command provides detailed information on its usage, as
well as references to other related manual pages. To display the manual page for the version
included in Red Hat Developer Toolset, type:

scl enable devtoolset-6 'man stap'

User Guide

66

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/SystemTap_Beginners_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SystemTap_Beginners_Guide/index.html

staprun(8) — The manual page for the staprun command provides detailed information on its
usage. To display the manual page for the version included in Red Hat Developer Toolset, type:

scl enable devtoolset-6 'man staprun'

SystemTap Tapset Reference Manual — HTML documentation on the most common tapset
definitions is located at /opt/rh/devtoolset-6/root/usr/share/doc/devtoolset-6-
systemtap-client-2.8/index.html .

Online Documentat ion

Red Hat Enterprise Linux 6 SystemTap Beginners Guide and Red Hat Enterprise Linux 7
SystemTap Beginners Guide — The SystemTap Beginners Guides for Red Hat Enterprise Linux 6
and 7 provide an introduction to SystemTap and its usage.

Red Hat Enterprise Linux 6 SystemTap Tapset Reference and Red Hat Enterprise Linux 7
SystemTap Tapset Reference — The SystemTap Tapset Reference for Red Hat Enterprise Linux 6
and 7 provides further details about SystemTap .

The SystemTap Documentation — The official SystemTap documentation provides further
documentation on SystemTap , as well as numerous examples of SystemTap scripts.

See Also

Section A.7, “Changes in SystemTap” provides a comprehensive list of features and
improvements over the version of SystemTap distributed in the previous release of Red Hat
Developer Toolset.

Chapter 1, Red Hat Developer Toolset provides an overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 12, Valgrind explains how to use Valgrind to profile applications and detect memory
errors and memory management problems, such as the use of uninitialized memory, improper
allocation and freeing of memory, and the use of improper arguments in system calls.

Chapter 13, OProfile explains how to use OProf ile to determine which sections of code consume
the greatest amount of CPU time and why.

Chapter 14, Dyninst documents how to use the Dyninst library to instrument a user-space
executable.

Chapt er 1 1 . Syst emT ap

67

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/SystemTap_Beginners_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SystemTap_Beginners_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/SystemTap_Tapset_Reference/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SystemTap_Tapset_Reference/index.html
http://sourceware.org/systemtap/documentation.html

Chapter 12. Valgrind

Valgrind is an instrumentation framework that ships with a number of tools for profiling
applications. It can be used to detect various memory errors and memory-management problems,
such as the use of uninitialized memory or an improper allocation and freeing of memory, or to
identify the use of improper arguments in system calls. For a complete list of profiling tools that are
distributed with the Red Hat Developer Toolset version of Valgrind , see Table 12.1, “Tools
Distributed with Valgrind for Red Hat Developer Toolset” .

Valgrind profiles an application by rewriting it and instrumenting the rewritten binary. This allows
you to profile your application without the need to recompile it, but it also makes Valgrind
significantly slower than other profilers, especially when performing extremely detailed runs. It is
therefore not suited to debugging time-specific issues, or kernel-space debugging.

Red Hat Developer Toolset is distributed with Valgrind 3.12.0 . This version is more recent than the
version included in the previous release of Red Hat Developer Toolset and provides numerous bug
fixes and enhancements.

Table 12.1. Tools Dist ributed with Valgrind for Red Hat Developer Toolset

Name Descript ion
Memcheck Detects memory management problems by intercepting system calls and

checking all read and write operations.
Cachegrind Identifies the sources of cache misses by simulating the level 1 instruction

cache (I1), level 1 data cache (D1), and unified level 2 cache (L2).
Callgrind Generates a call graph representing the function call history.
Helgrind Detects synchronization errors in multithreaded C, C++, and Fortran

programs that use POSIX threading primitives.
DRD Detects errors in multithreaded C and C++ programs that use POSIX

threading primitives or any other threading concepts that are built on top
of these POSIX threading primitives.

Massif Monitors heap and stack usage.

12.1. Installing Valgrind

In Red Hat Developer Toolset, Valgrind is provided by the devtoolset-6-valgrind package and is
automatically installed with devtoolset-6-perftools. If you intend to use Valgrind to profile parallel
programs that use the Message Passing Interface (MPI) protocol, also install the devtoolset-6-valgrind-
openmpi package by typing the following at a shell prompt as root:

yum install devtoolset-6-valgrind-openmpi

For detailed instructions on how to install Red Hat Developer Toolset and related packages to your
system, see Section 1.5, “ Installing Red Hat Developer Toolset” .

Note

Note that if you use Valgrind in combination with the GNU Debugger, it is recommended
that you use the version of GDB that is included in Red Hat Developer Toolset to ensure that
all features are fully supported.

User Guide

68

12.2. Using Valgrind

To run any of the Valgrind tools on a program you want to profile, type the following at a shell
prompt:

scl enable devtoolset-6 'valgrind [--tool=tool] program [argument...]'

See Table 12.1, “Tools Distributed with Valgrind for Red Hat Developer Toolset” for a list of tools that
are distributed with Valgrind . The argument of the --tool command line option must be specified
in lower case, and if this option is omitted, Valgrind uses Memcheck by default. For example, to run
Cachegrind on a program to identify the sources of cache misses, type:

scl enable devtoolset-6 'valgrind --tool=cachegrind program
[argument...]'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset Valgrind as default:

scl enable devtoolset-6 'bash'

Important

Red Hat Developer Toolset 4.0 as well as Red Hat Enterprise Linux 7.0 and 7.1 support only
the Open MPI application binary interface (ABI) version 1.6, whereas Red Hat
Enterprise Linux 7.2 supports Open MPI 1.10 . The two versions are binary incompatible. As a
consequence, programs that are built against Open MPI 1.10 cannot be run under Valgrind
included in Red Hat Developer Toolset. To work around this problem, use the Red Hat
Enterprise Linux 7.2 version of Valgrind for programs linked against Open MPI version 1.10.

Note

To verify the version of Valgrind you are using at any point, type the following at a shell
prompt:

which valgrind

Red Hat Developer Toolset's valgrind executable path will begin with /opt. Alternatively,
you can use the following command to confirm that the version number matches that for
Red Hat Developer Toolset Valgrind :

valgrind --version

12.3. Rebuilding Valgrind

The source RPM package for Valgrind (devtoolset-4-valgrind.src.rpm) requires the

Chapt er 1 2 . Valgrind

69

openmpi-devel package version 1.3.3 or later. On Red Hat Enterprise Linux 6.8, running the yum -
y install openmpi-devel command results in installing the openmpi-1.10-devel package, and
thus the requirement is unsatisfied. As a consequence, devtoolset-4-valgrind.src.rpm
cannot be rebuilt on Red Hat Enterprise Linux 6.8. Note that this problem does not occur in earlier
releases of Red Hat Enterprise Linux 6.

12.4 . Addit ional Resources

A detailed description of Valgrind and its features is beyond the scope of this book. For more
information, see the resources listed below.

Installed Documentat ion

valgrind(1) — The manual page for the valgrind utility provides detailed information on how to
use Valgrind. To display the manual page for the version included in Red Hat Developer Toolset,
type:

scl enable devtoolset-6 'man valgrind'

Valgrind Documentation — HTML documentation for Valgrind is located at
/opt/rh/devtoolset-6/root/usr/share/doc/devtoolset-6-valgrind-
3.9.0/html/index.html .

Online Documentat ion

Red Hat Enterprise Linux 6 Developer Guide and Red Hat Enterprise Linux 7 Developer Guide —
The Developer Guides for Red Hat Enterprise Linux 6 and 7 provide more information about
Valgrind and its Eclipse plug-in.

Red Hat Enterprise Linux 6 Performance Tuning Guide Red Hat Enterprise Linux 7 Performance
Tuning Guide — The Performance Tuning Guides for Red Hat Enterprise Linux 6 and 7 provide
more detailed information about using Valgrind to profile applications.

See Also

Section A.9, “Changes in Valgrind” provides a comprehensive list of features and improvements
over the version of Valgrind distributed in the previous release of Red Hat Developer Toolset.

Chapter 1, Red Hat Developer Toolset provides an overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 10, memstomp documents how to use the memstomp utility to identify calls to library
functions with overlapping memory regions that are not allowed by various standards.

Chapter 11, SystemTap provides an introduction to SystemTap and explains how to use it to
monitor the activities of a running system.

Chapter 13, OProfile explains how to use OProf ile to determine which sections of code consume
the greatest amount of CPU time and why.

Chapter 14, Dyninst documents how to use the Dyninst library to instrument a user-space
executable.

User Guide

70

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Developer_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html

Chapter 13. OProfile

OProf ile is a low overhead, system-wide profiler that uses the performance-monitoring hardware on
the processor to retrieve information about the kernel and executables on the system, such as when
memory is referenced, the number of level 2 cache (L2) requests, and the number of hardware
interrupts received. It consists of a configuration utility, a daemon for collecting data, and a number
of tools that can be used to transform the data into a human-readable form. For a complete list of
tools that are distributed with the Red Hat Developer Toolset version of OProf ile , see Table 13.1,
“Tools Distributed with OProfile for Red Hat Developer Toolset” .

OProf ile profiles an application without adding any instrumentation by recording the details of
every nth event. This allows it to consume fewer resources than Valgrind , but it also causes its
samples to be less precise. Unlike Valgrind , which only collects data for a single process and its
children in user-space, OProf ile is well suited to collect system-wide data on both user-space and
kernel-space processes, and requires root privileges to run.

Red Hat Developer Toolset is distributed with OProf ile 1.1.0 .

Table 13.1. Tools Dist ributed with OProf ile for Red Hat Developer Toolset

Name Descript ion
oprofiled The OProf ile daemon that collects profiling data.
operf Intended to replace the deprecated opcontrol tool. The operf tool

uses the Linux Performance Events subsystem, allowing users to target
their profiling more precisely, as a single process or system-wide, and
allowing OProf ile to co-exist better with other tools using the
performance monitoring hardware on your system. Unlike opcontrol ,
no initial setup is required, and it can be used without the root privileges
unless the --system-wide option is in use.

opannotate Generates an annotated source file or assembly listing from the profiling
data.

oparchive Generates a directory containing executable, debug, and sample files.
opgprof Generates a summary of a profiling session in a format compatible with

gprof.
ophelp Displays a list of available events.
opimport Converts a sample database file from a foreign binary format to the native

format.
opjitconv Converts a just-in-time (JIT) dump file to the Executable and Linkable

Format (ELF).
opreport Generates image and symbol summaries of a profiling session.
ocount A new tool for counting the number of times particular events occur

during the duration of a monitored command.

13.1. Installing OProfile

In Red Hat Developer Toolset, OProf ile is provided by the devtoolset-6-oprofile package and is
automatically installed with devtoolset-6-perftools as described in Section 1.5, “ Installing Red Hat
Developer Toolset” .

13.2. Using OProfile

Chapt er 1 3. OProfile

71

To run any of the tools that are distributed with OProf ile , type the following at a shell prompt as
root:

scl enable devtoolset-6 'tool [option...]'

See Table 13.1, “Tools Distributed with OProfile for Red Hat Developer Toolset” for a list of tools that
are distributed with OProf ile . For example, to use the ophelp command to list available events in
the XML format, type:

scl enable devtoolset-6 'ophelp -X'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset OProf ile as default:

scl enable devtoolset-6 'bash'

Note

To verify the version of OProf ile you are using at any point, type the following at a shell
prompt:

which operf

Red Hat Developer Toolset's operf executable path will begin with /opt. Alternatively, you
can use the following command to confirm that the version number matches that for Red Hat
Developer Toolset OProf ile :

operf --version

13.3. Addit ional Resources

A detailed description of OProf ile and its features is beyond the scope of this book. For more
information, see the resources listed below.

Installed Documentat ion

oprofile(1) — The manual page named oprof ile provides an overview of OProf ile and available
tools. To display the manual page for the version included in Red Hat Developer Toolset, type:

scl enable devtoolset-6 'man oprofile'

opannotate(1), oparchive(1), operf(1), opgprof(1), ophelp(1), opimport(1), opreport(1) — Manual
pages for various tools distributed with OProf ile provide more information on their respective
usage. To display the manual page for the version included in Red Hat Developer Toolset, type:

scl enable devtoolset-6 'man tool'

User Guide

72

Online Documentat ion

Red Hat Enterprise Linux 6 Developer Guide and Red Hat Enterprise Linux 7 Developer Guide —
The Developer Guides for Red Hat Enterprise Linux 6 and 7 provide more information on OProf ile .

Red Hat Enterprise Linux 6 Deployment Guide — The Deployment Guide for Red Hat
Enterprise Linux 6 describes in detail how to install, configure, and start using OProfile on this
system.

Red Hat Enterprise Linux 7 System Administrator's Guide — The System Administrator's Guide for
Red Hat Enterprise Linux 7 documents how to use the operf tool.

See Also

Section A.5, “Changes in OProfile” provides a comprehensive list of features and improvements
over the version distributed in the previous release of Red Hat Developer Toolset.

Chapter 1, Red Hat Developer Toolset provides an overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 11, SystemTap provides an introduction to SystemTap and explains how to use it to
monitor the activities of a running system.

Chapter 12, Valgrind explains how to use Valgrind to profile applications and detect memory
errors and memory management problems, such as the use of uninitialized memory, improper
allocation and freeing of memory, and the use of improper arguments in system calls.

Chapter 14, Dyninst documents how to use the Dyninst library to instrument a user-space
executable.

Chapt er 1 3. OProfile

73

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Developer_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/index.html

Chapter 14. Dyninst

The Dyninst library provides an application programming interface (API) for instrumenting and working
with user-space executables during their execution. It can be used to insert code into a running
program, change certain subroutine calls, or even remove them from the program. It serves as a
valuable debugging and performance-monitoring tool. The Dyninst API is also commonly used
along with SystemTap to allow non-root users to instrument user-space executables.

Red Hat Developer Toolset is distributed with Dyninst 9 .2.0 .

14.1. Installing Dyninst

In Red Hat Developer Toolset, the Dyninst library is provided by the devtoolset-6-dyninst package
and is automatically installed with devtoolset-6-perftools as described in Section 1.5, “ Installing
Red Hat Developer Toolset” . In addition, it is recommended that you also install the GNU Compiler
Collect ion provided by the devtoolset-6-toolchain package.

If you intend to write a custom instrumentation for binaries, install the relevant header files by running
the following command as root:

yum install devtoolset-6-dyninst-devel

You can also install API documentation for this library by typing the following at a shell prompt as
root:

yum install devtoolset-6-dyninst-doc

For a complete list of documents that are included in the devtoolset-6-dyninst-doc package, see
Section 14.3, “Additional Resources” . For detailed instructions on how to install optional packages
to your system, see Section 1.5, “ Installing Red Hat Developer Toolset” .

14.2. Using Dyninst

14 .2.1. Using Dyninst with SystemT ap

To use Dyninst along with SystemTap to allow non-root users to instrument user-space
executables, run the stap command with the --dyninst (or --runtime=dyninst) command line
option. This tells stap to translate a SystemTap script into C code that uses the Dyninst library,
compile this C code into a shared library, and then load the shared library and run the script. Note
that when executed like this, the stap command also requires the -c or -x command line option to
be specified.

To use the Dyninst runtime to instrument an executable file, type the following at a shell prompt:

scl enable devtoolset-6 "stap --dyninst -c 'command' [option...]
[argument...]"

Similarly, to use the Dyninst runtime to instrument a user's process, type:

scl enable devtoolset-6 "stap --dyninst -x process_id [option...]
[argument...]"

User Guide

74

See Chapter 11, SystemTap for more information about the Red Hat Developer Toolset version of
SystemTap . For a general introduction to SystemTap and its usage, see the SystemTap Beginners
Guide for Red Hat Enterprise Linux 6 or the SystemTap Beginners Guide for Red Hat Enterprise Linux 7.

Example 14 .1. Using Dyninst with SystemTap

Consider a source file named exercise.C that has the following contents:

#include <stdio.h>

void print_iteration(int value) {
 printf("Iteration number %d\n", value);
}

int main(int argc, char **argv) {
 int i;
 printf("Enter the starting number: ");
 scanf("%d", &i);
 for(; i>0; --i)
 print_iteration(i);
 return 0;
}

This program prompts the user to enter a starting number and then counts down to 1, calling the
print_iteration() function for each iteration in order to print the number to the standard
output. To compile this program on the command line using the g++ compiler from Red Hat
Developer Toolset, type the following at a shell prompt:

~]$ scl enable devtoolset-6 'g++ -g -o exercise exercise.C'

Now consider another source file named count.stp with the following contents:

#!/usr/bin/stap

global count = 0

probe process.function("print_iteration") {
 count++
}

probe end {
 printf("Function executed %d times.\n", count)
}

This SystemTap script prints the total number of times the print_iteration() function was
called during the execution of a process. To run this script on the exercise binary file, type:

~]$ scl enable devtoolset-6 "stap --dyninst -c './exercise'
count.stp"
Enter the starting number: 5
Iteration number 5
Iteration number 4

Chapt er 1 4 . Dyninst

75

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/SystemTap_Beginners_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SystemTap_Beginners_Guide/index.html

Iteration number 3
Iteration number 2
Iteration number 1
Function executed 5 times.

14 .2.2. Using Dyninst as a Stand-alone Applicat ion

Before using the Dyninst library as a stand-alone application, set the value of the
DYNINSTAPI_RT_LIB environment variable to the path to the runtime library file. You can do so by
typing the following at a shell prompt:

export DYNINSTAPI_RT_LIB=/opt/rh/devtoolset-
6/root/usr/lib64/dyninst/libdyninstAPI_RT.so

This sets the DYNINSTAPI_RT_LIB environment variable in the current shell session.

Example 14.2, “Using Dyninst as a Stand-alone Application” illustrates how to write and build a
program to monitor the execution of a user-space process. For a detailed explanation of how to use
Dyninst , see the resources listed in Section 14.3, “Additional Resources” .

Example 14 .2. Using Dyninst as a Stand-alone Applicat ion

Consider the exercise.C source file from Example 14.1, “Using Dyninst with SystemTap” : this
program prompts the user to enter a starting number and then counts down to 1, calling the
print_iteration() function for each iteration in order to print the number to standard output.

Now consider another source file named count.C with the following contents:

#include <stdio.h>
#include <fcntl.h>
#include "BPatch.h"
#include "BPatch_process.h"
#include "BPatch_function.h"
#include "BPatch_Vector.h"
#include "BPatch_thread.h"
#include "BPatch_point.h"

void usage() {
 fprintf(stderr, "Usage: count <process_id> <function>\n");
}

// Global information for counter
BPatch_variableExpr *counter = NULL;

void createCounter(BPatch_process *app, BPatch_image *appImage) {
 int zero = 0;
 counter = app->malloc(*appImage->findType("int"));
 counter->writeValue(&zero);
}

bool interceptfunc(BPatch_process *app,
 BPatch_image *appImage,
 char *funcName) {
 BPatch_Vector<BPatch_function *> func;

User Guide

76

 appImage->findFunction(funcName, func);
 if(func.size() == 0) {
 fprintf(stderr, "Unable to find function to instrument()\n");
 exit (-1);
 }
 BPatch_Vector<BPatch_snippet *> incCount;
 BPatch_Vector<BPatch_point *> *points;
 points = func[0]->findPoint(BPatch_entry);
 if ((*points).size() == 0) {
 exit (-1);
 }

 BPatch_arithExpr counterPlusOne(BPatch_plus, *counter,
BPatch_constExpr(1));
 BPatch_arithExpr addCounter(BPatch_assign, *counter,
counterPlusOne);

 return app->insertSnippet(addCounter, *points);
}

void printCount(BPatch_thread *thread, BPatch_exitType) {
 int val = 0;
 counter->readValue(&val, sizeof(int));
 fprintf(stderr, "Function executed %d times.\n", val);
}

int main(int argc, char *argv[]) {
 int pid;
 BPatch bpatch;
 if (argc != 3) {
 usage();
 exit(1);
 }
 pid = atoi(argv[1]);
 BPatch_process *app = bpatch.processAttach(NULL, pid);
 if (!app) exit (-1);
 BPatch_image *appImage = app->getImage();
 createCounter(app, appImage);
 fprintf(stderr, "Finding function %s(): ", argv[2]);
 BPatch_Vector<BPatch_function*> countFuncs;
 fprintf(stderr, "OK\nInstrumenting function %s(): ", argv[2]);
 interceptfunc(app, appImage, argv[2]);
 bpatch.registerExitCallback(printCount);
 fprintf(stderr, "OK\nWaiting for process %d to exit...\n", pid);
 app->continueExecution();
 while (!app->isTerminated())
 bpatch.waitForStatusChange();
 return 0;
}

Note that a client application is expected to destroy all Bpatch objects before any of the Dyninst
library destructors are called. Otherwise the mutator might terminate unexpectedly with a
segmentation fault. To work around this problem, set the BPatch object of the mutator as a local
variable in the main() function. Or, if you need to use BPatch as a global variable, manually
detach all the mutatee processes before the mutator exits.

Chapt er 1 4 . Dyninst

77

This program accepts a process ID and a function name as command line arguments and then
prints the total number of times the function was called during the execution of the process. You
can use the following Makefile to build these two files:

DTS = /opt/rh/devtoolset-4/root
CXXFLAGS = -g -I$(DTS)/usr/include/dyninst
LBITS := $(shell getconf LONG_BIT)

ifeq ($(LBITS),64)
 DYNINSTLIBS = $(DTS)/usr/lib64/dyninst
else
 DYNINSTLIBS = $(DTS)/usr/lib/dyninst
endif

.PHONY: all
all: count exercise

count: count.C
 g++ $(CXXFLAGS) count.C -I /usr/include/dyninst -c
 g++ $(CXXFLAGS) count.o -L $(DYNINSTLIBS) -ldyninstAPI -o count

exercise: exercise.C
 g++ $(CXXFLAGS) exercise.C -o exercise

.PHONY: clean
clean:
 rm -rf *~ *.o count exercise

To compile the two programs on the command line using the g++ compiler from Red Hat
Developer Toolset, run the make utility as follows:

~]$ scl enable devtoolset-6 make
g++ -g -I/opt/rh/devtoolset-6/root/usr/include/dyninst count.C -c
g++ -g -I/opt/rh/devtoolset-6/root/usr/include/dyninst count.o -L
/opt/rh/devtoolset-6/root/usr/lib64/dyninst -ldyninstAPI -o count
g++ -g -I/opt/rh/devtoolset-6/root/usr/include/dyninst exercise.C -o
exercise

This creates new binary files called exercise and count in the current working directory.

In one shell session, execute the exercise binary file as follows and wait for it to prompt you to
enter the starting number:

~]$./exercise
Enter the starting number:

Do not enter this number. Instead, start another shell session and type the following at its prompt
to set the DYNINSTAPI_RT_LIB environment variable and execute the count binary file:

~]$ export DYNINSTAPI_RT_LIB=/opt/rh/devtoolset-
6/root/usr/lib64/dyninst/libdyninstAPI_RT.so
~]$./count `pidof exercise` print_iteration
Finding function print_iteration(): OK
Instrumenting function print_iteration(): OK
Waiting for process 8607 to exit...

User Guide

78

Now switch back to the first shell session and enter the starting number as requested by the
exercise program. For example:

Enter the starting number: 5
Iteration number 5
Iteration number 4
Iteration number 3
Iteration number 2
Iteration number 1

When the exercise program terminates, the count program displays the number of times the
print_iteration() function was executed:

Function executed 5 times.

14.3. Addit ional Resources

A detailed description of Dyninst and its features is beyond the scope of this book. For more
information, see the resources listed below.

Installed Documentat ion

The devtoolset-6-dyninst-doc package installs the following documents in the
/opt/rh/devtoolset-6/root/usr/share/doc/devtoolset-6-dyninst-doc-8.2.1/
directory:

Dyninst Programmer's Guide — A detailed description of the Dyninst API is stored in the
DyninstAPI.pdf file.

DynC API Programmer's Guide — An introduction to DynC API is stored in the dynC_API.pdf file.

ParseAPI Programmer's Guide — An introduction to the ParseAPI is stored in the ParseAPI.pdf
file.

PatchAPI Programmer's Guide — An introduction to PatchAPI is stored in the PatchAPI.pdf file.

ProcControlAPI Programmer's Guide — A detailed description of ProcControlAPI is stored in the
ProcControlAPI.pdf file.

StackwalkerAPI Programmer's Guide — A detailed description of StackwalkerAPI is stored in the
stackwalker.pdf file.

SymtabAPI Programmer's Guide — An introduction to SymtabAPI is stored in the SymtabAPI.pdf
file.

InstructionAPI Reference Manual — A detailed description of the InstructionAPI is stored in the
InstructionAPI.pdf file.

For information on how to install this package on your system, see Section 14.1, “ Installing Dyninst” .

Online Documentat ion

Dyninst Home Page — The project home page provides links to additional documentation and
related publications.

Chapt er 1 4 . Dyninst

79

http://www.dyninst.org/

Section A.8, “Changes in dyninst” provides a comprehensive list of features and improvements
over the Red Hat Enterprise Linux version of dyninst and the version distributed in the previous
release of Red Hat Developer Toolset.

Red Hat Enterprise Linux 6 SystemTap Beginners Guide — The SystemTap Beginners Guide for
Red Hat Enterprise Linux 6 provides an introduction to SystemTap and its usage.

Red Hat Enterprise Linux 7 SystemTap Beginners Guide — The SystemTap Beginners Guide for
Red Hat Enterprise Linux 7 provides an introduction to SystemTap and its usage.

Red Hat Enterprise Linux 6 SystemTap Tapset Reference — The SystemTap Tapset Reference for
Red Hat Enterprise Linux 6 provides further details about SystemTap.

Red Hat Enterprise Linux 7 SystemTap Tapset Reference — The SystemTap Tapset Reference for
Red Hat Enterprise Linux 7 provides further details about SystemTap.

See Also

Chapter 1, Red Hat Developer Toolset provides an overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 11, SystemTap provides an introduction to SystemTap and explains how to use it to
monitor the activities of a running system.

Chapter 12, Valgrind explains how to use Valgrind to profile applications and detect memory
errors and memory management problems, such as the use of uninitialized memory, improper
allocation and freeing of memory, and the use of improper arguments in system calls.

Chapter 13, OProfile explains how to use OProf ile to determine which sections of code consume
the greatest amount of CPU time and why.

User Guide

80

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/SystemTap_Beginners_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SystemTap_Beginners_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/SystemTap_Tapset_Reference/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SystemTap_Tapset_Reference/index.html

Part V. Getting Help

Part V. Get t ing Help

81

Chapter 15. Accessing Red Hat Product Documentation

Red Hat Product Documentat ion located at https://access.redhat.com/site/documentation/
serves as a central source of information. It is currently translated in 23 languages, and for each
product, it provides different kinds of books from release and technical notes to installation, user,
and reference guides in HTML, PDF, and EPUB formats.

Below is a brief list of documents that are directly or indirectly relevant to this book.

Red Hat Developer Toolset

Red Hat Developer Toolset 6.0 Release Notes — The Release Notes for Red Hat
Developer Toolset 6.0 contain more information.

Red Hat Software Collections Packaging Guide — The Software Collections Packaging Guide
explains the concept of Software Collections and documents how to create, build, and extend
them.

Red Hat Enterprise Linux

Red Hat Enterprise Linux 6 Developer Guide and Red Hat Enterprise Linux 7 Developer Guide —
The Developer Guides for Red Hat Enterprise Linux 6 and 7 provide more information about
libraries and runtime support, compiling and building, debugging, and profiling.

Red Hat Enterprise Linux 6 Installation Guide — The Installation Guide for Red Hat
Enterprise Linux 6 explains how to obtain, install, and update the system.

Red Hat Enterprise Linux 6 Installation Guide and Red Hat Enterprise Linux 7 Installation Guide —
The Installation Guides for Red Hat Enterprise Linux 6 an 7 explain how to obtain, install, and
update the system.

Red Hat Enterprise Linux 6 Deployment Guide — The Deployment Guide for Red Hat
Enterprise Linux 6 documents relevant information regarding the deployment, configuration, and
administration of Red Hat Enterprise Linux 6.

Red Hat Enterprise Linux 7 System Administrator's Guide — The System Administrator's Guide for
Red Hat Enterprise Linux 7 documents relevant information regarding the deployment,
configuration, and administration of Red Hat Enterprise Linux 7.

User Guide

82

https://access.redhat.com/site/documentation/
https://access.redhat.com/site/documentation/en-US/Red_Hat_Developer_Toolset/6/html/6.0_Release_Notes/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Software_Collections/2/html/Packaging_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Developer_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Installation_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Installation_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/index.html

Chapter 16. Contacting Global Support Services

Unless you have a Self-Support subscription, when both the Red Hat Documentation website and
Customer Portal fail to provide the answers to your questions, you can contact Global Support
Services (GSS).

16.1. Gathering Required Informat ion

Several items of information should be gathered before contacting GSS.

Background Informat ion

Ensure you have the following background information at hand before calling GSS:

Hardware type, make, and model on which the product runs

Software version

Latest upgrades

Any recent changes to the system

An explanation of the problem and the symptoms

Any messages or significant information about the issue

Note

If you ever forget your Red Hat login information, it can be recovered at
https://access.redhat.com/site/help/LoginAssistance.html.

Diagnost ics

The diagnostics report for Red Hat Enterprise Linux is required as well. This report is also known as
a sosreport and the program to create the report is provided by the sos package. To install the sos
package and all its dependencies on your system, type the following at a shell prompt as root:

yum install sos

To generate the report, run as root:

sosreport

For more information, access the Knowledgebase article at https://access.redhat.com/kb/docs/DOC-
3593.

 Account and Contact Informat ion

In order to help you, GSS requires your account information to customize their support, as well
contact information to get back to you. When you contact GSS ensure you have your:

Red Hat customer number or Red Hat Network (RHN) login name

Chapt er 1 6 . Cont act ing Global Support Services

83

https://access.redhat.com/site/help/LoginAssistance.html
https://access.redhat.com/kb/docs/DOC-3593

Company name

Contact name

Preferred method of contact (phone or email) and contact information (phone number or email
address)

Issue Severity

Determining an issue's severity is important to allow the GSS team to prioritize their work. There are
four levels of severity.

Severity 1 (urgent)

A problem that severely impacts your use of the software for production purposes. It halts
your business operations and has no procedural workaround.

Severity 2 (h igh)

A problem where the software is functioning, but production is severely reduced. It causes a
high impact to business operations, and no workaround exists.

Severity 3 (medium)

A problem that involves partial, non-critical loss of the use of the software. There is a
medium to low impact on your business, and business continues to function by utilizing a
workaround.

Severity 4 (low)

A general usage question, report of a documentation error, or a recommendation for a
future product improvement.

For more information on determining the severity level of an issue, see
https://access.redhat.com/support/policy/severity.

Once the issue severity has been determined, submit a service request through the Customer Portal
under the Connect option, or at https://access.redhat.com/support/contact/technicalSupport.html.
Note that you need your Red Hat login details in order to submit service requests.

If the severity is level 1 or 2, then follow up your service request with a phone call. Contact
information and business hours are found at
https://access.redhat.com/support/contact/technicalSupport.html.

If you have a premium subscription, then after hours support is available for Severity 1 and 2 cases.

Turn-around rates for both premium subscriptions and standard subscription can be found at
https://access.redhat.com/support/offerings/production/sla.html.

16.2. Escalat ing an Issue

If you feel an issue is not being handled correctly or adequately, you can escalate it. There are two
types of escalations:

Technical escalat ion

If an issue is not being resolved appropriately or if you need a more senior resource to
attend to it.

User Guide

84

https://access.redhat.com/support/policy/severity
https://access.redhat.com/support/contact/technicalSupport.html
https://access.redhat.com/support/contact/technicalSupport.html
https://access.redhat.com/support/offerings/production/sla.html

Management escalat ion

If the issue has become more severe or you believe it requires a higher priority.

More information on escalation, including contacts, is available at
https://access.redhat.com/support/policy/mgt_escalation.html.

16.3. Re-opening a Service Request

If there is more relevant information regarding a closed service request (such as the problem
reoccurring), you can re-open the request via the Red Hat Customer Portal at
https://access.redhat.com/support/policy/mgt_escalation.html or by calling your local support center,
the details of which can be found at
https://access.redhat.com/support/contact/technicalSupport.html.

Important

In order to re-open a service request, you need the original service-request number.

16.4 . Addit ional Resources

For more information, see the resources listed below.

Online Documentat ion

Getting Started — The Getting Started page serves as a starting point for people who purchased a
Red Hat subscription and offers the Red Hat Welcome Kit and the Quick Guide to Red Hat Support for
download.

How can a RHEL Self-Support subscription be used? — A Knowledgebase article for customers
with a Self-Support subscription.

Red Hat Global Support Services and public mailing lists — A Knowledgebase article that
answers frequent questions about public Red Hat mailing lists.

Chapt er 1 6 . Cont act ing Global Support Services

85

https://access.redhat.com/support/policy/mgt_escalation.html
https://access.redhat.com/support/policy/mgt_escalation.html
https://access.redhat.com/support/contact/technicalSupport.html
https://access.redhat.com/support/start/
https://access.redhat.com/knowledge/articles/54702
https://access.redhat.com/knowledge/articles/92323

Appendix A. Changes in Version 6.0

The sections below document features and compatibility changes introduced in Red Hat
Developer Toolset 6.0.

A.1. Changes in binut ils

Red Hat Developer Toolset 6.0 is distributed with binut ils 2.27 , which provides a number of bug
fixes and feature enhancements over the version included in Red Hat Enterprise Linux and the
previous version of Red Hat Developer Toolset. Below is a comprehensive list of new features in this
release.

A.1.1. Changes Since Red Hat Enterprise Linux 6.8

The following features have been added since the release of binut ils in Red Hat
Enterprise Linux 6.8:

The GNU assembler (as), GNU linker (ld), and other binary tools that are part of binut ils are now
released under the GNU General Public License, version 3.

A.1.1 .1 . GNU Linker

Another ELF linker, gold , is now available in addition to ld , the existing GNU linker. gold is
intended to be a drop-in replacement for ld , so ld 's documentation is intended to be the reference
documentation. gold supports most of ld 's features, except notable ones such as MRI-compatible
linker scripts, cross-reference reports (--cref), and various other minor options. It also provides
significantly improved link time with very large C++ applications.

In Red Hat Developer Toolset 6.0, the gold linker is not enabled by default. Users can explicitly
switch between ld and gold by using the alternatives mechanism.

A.1.1.1.1. New Features

The following features have been added since the release of binut ils included in Red Hat
Enterprise Linux 6.8:

A new INPUT_SECTION_FLAGS keyword has been added to the linker script language. This
keyword can be used to select input sections by section header flags.

A new SORT_BY_INIT_PRIORITY keyword has been added to the linker script language. This
keyword can be used to sort sections by numerical value of the GCC init_priority attribute
encoded in the section name.

A new SORT_NONE keyword has been added to the linker script language. This keyword can be
used to disable section sorting.

A new linker-provided symbol, __ehdr_start, has been added. When producing ELF output, this
symbol points to the ELF file header (and nearby program headers) in the program's memory
image.

A new --compress-debug-sections command line option has been added to enable the
generation of compressed DWARF debug information sections in the relocatable output file.

A.1.1.1.2. Compat ib ility Changes

The following compatibility changes have been made since the release of binut ils included in

User Guide

86

Red Hat Enterprise Linux 6.8:

The --copy-dt-needed-entries command line option is no longer enabled by default.
Instead, --no-copy-dt-needed-entries is now the default option.

Evaluation of linker script expressions has been significantly improved. Note that this can
negatively affect scripts that rely on undocumented behavior of the old expression evaluation.

A.1.1 .2 . GNU Assembler

A.1.1.2.1. New Features

The following features have been added since the release of binut ils included in Red Hat
Enterprise Linux 6.8:

The GNU Assembler no longer requires double ampersands in macros.

A new --compress-debug-sections command line option has been added to enable the
generation of compressed DWARF debug information sections in the relocatable output file.

Note that the setting of this option for the linker overrides the setting for the assembler. For
example, if an object file contains a compressed debug section, but it is linked without --
compress-debug-sections being passed to the linker, then those sections will be
uncompressed as they are copied into the output binary.

Support for .bundle_align_mode, .bundle_lock, and .bundle_unlock directives for
x86 targets has been added..

On x86 architectures, the GNU Assembler now allows rep bsf, rep bsr, and rep ret syntax.

A.1.1 .3. Ot her Binary T o o ls

A.1.1.3.1. New Features

The following features have been added since the release of binut ils included in Red Hat
Enterprise Linux 6.8:

 The readelf and objdump tools can now display the contents of the .debug.macro sections.

 New --dwarf-start and --dwarf-end command line options have been added to the
readelf and objdump tools. These options are used by the new Emacs mode (see the dwarf-
mode.el file).

 A new --interleave-width command line option has been added to the objcopy tool to
allow the use of the --interleave to copy a range of bytes from the input to the output.

 A new --dyn-syms command line option has been added to the readelf tool. This option can
be used to dump dynamic symbol table.

 A new tool, elfedit, has been added to binut ils . This tool can be used to directly manipulate
ELF format binaries.

 A new command line option --addresses (or -a for short) has been added to the addr2line
tool. This option can be used to display addresses before function and source file names.

 A new command line option --pretty-print (or -p for short) has been added to the
addr2line tool. This option can be used to produce human-readable output.

Appendix A. Changes in Version 6 .0

87

Support for reading the optimized debug information generated by the dwz -m tool has been
added.

The devtoolset-2-binutils-devel package now provides the demangle.h header file.

A.1.2. Changes Since Red Hat Developer T oolset 4 .1

The following features have been added since the release of binut ils in Red Hat
Developer Toolset 4.1 and Red Hat Enterprise Linux 7.3:

Support has been added for generating and using compressed debug sections. This reduces the
size of binaries but can cause problems when other tools, not from the binutils package, try to
examine them. For this reason, the actual generation of the compressed sections requires an
explicit command-line option to be passed to the assembler or linker.

A.1.2 .1 . GNU Linker

A.1.2.1.1. New Features

The following features have been added since the release of binut ils included in Red Hat
Developer Toolset 4.1 and Red Hat Enterprise Linux 7.3:

The linker now automatically enables the read-only run-time relocations (option -z relro)
unless explicitly told otherwise. This helps to enhance the security of executables.

The linker supports a new command-line option to define how orphan sections should be
handled. Orphan sections are sections from input files whose placement in the output file is not
defined by the linker script being used. The default behaviour is still maintained, but the option
can be used to generate warning or error messages about them, or even to discard them entirely.

The linker supports a new command line option, --require-defined SYM, which causes the
linker to generate an error if SYM has not been defined by the time the end of the linking process
has been reached.

The linker supports a new command line option, -z nodynamic-undefined-weak, which
stops it from generating dynamic relocations against undefined weak symbols in the executable
being created.

A.1.2 .2 . GNU Assembler

A.1.2.2.1. New Features

The following features have been added since the release of binut ils included in Red Hat
Developer Toolset 4.1 and Red Hat Enterprise Linux 7.3:

The assembler now supports the ARM v8.1 and ARM v8-M architectures, including the Adv.SIMD,
LOR, PAN, Security, and DSP extensions.

The assembler now allows ELF section flags and types to be set using numeric values as well as
textual names.

The assembler now accepts symbol and label names enclosed in double quotes ("), which allows
them to contain characters that are not part of valid symbol names in high-level languages.

A.2. Changes in elfut ils

User Guide

88

Red Hat Developer Toolset 6.0 is distributed with elfut ils 0.16 7 , which provides a number of bug
fixes and feature enhancements over the version included in the previous release of Red Hat
Developer Toolset.

A.2.1. Changes Since Red Hat Developer T oolset 4 .1

The following new ELF and DWARF string table creation functions have been added since the
release of elfut ils in Red Hat Developer Toolset 4.1: dwelf_strtab_init, dwelf_strtab_add ,
dwelf_strtab_add_len, dwelf_strtab_finalize, dwelf_strent_off,
dwelf_strent_str, and dwelf_strtab_free.

A.3. Changes in GCC

Red Hat Developer Toolset 6.0 is distributed with GCC 6 .2.1 , which provides a number of bug fixes
and new features over the version included in Red Hat Enterprise Linux and the previous version of
Red Hat Developer Toolset.

A.3.1. Changes Since Red Hat Developer T oolset 4 .1

The following features have been added since the release of GCC in Red Hat Developer Toolset 4.1:

The C++ compiler defaults to C++14 rather than C++98. Certain experimental C++17 language
and runtime features have also been made available.

Source locations are now tracked as ranges rather than points, which allows much richer
diagnostics as well as " fixit" hints.

New warnings have been implemented for statically detecting certain likely programming errors,
including: negative shifts, shift overflow, tautological comparisons, null pointer dereferences,
duplicated conditions, and misleading indentation.

Various optimizer improvements have been added, particularly in alias analysis which helps to
remove abstraction penalties for C++ code, improvements in the vectorizer, redundancy
elimination, useless conditional elimination, and others.

OpenMP 4.5 support for C and C++ has been added.

Additional sanitizers to detect undefined behavior at runtime have been added.

A new option, -mfloat128, has been implemented. It allows users to experiment with IEEE 128-bit
floating point.

The 64-bit IBM POWER architecture now supports IEEE 128-bit floating-point using the
__float128 data type. Note that Red Hat Developer Toolset does not enable this support
default, and __float128 is not supported by the Red Hat Enterprise Linux 7 runtime.

Plat fo rm-Specific Impro vement s

The following improvements have been made to support for individual platforms:

Support has been added for Intel Skylake processors with support for the AVX-512 extensions
and the following instruction sets: Foundation (F), Byte and Word (BW), Doubleword and
Quadword (DQ), Vector Length Extensions (VL), and Conflict Detection (CD).

Support has been added for 64-bit ARM (AArch64) LSE extensions and support for new
implementations and code-generation tuning for those implementations of the AArch64 ISA.

Appendix A. Changes in Version 6 .0

89

Early support has been added for IEEE 128-bit floating point.

Support for the z13 processor of the IBM z Systems architecture has been added.

A.4. Changes in GDB

Red Hat Developer Toolset 6.0 is distributed with GDB 7.12 , which provides a number of bug fixes
and improvements over the Red Hat Enterprise Linux system version and the version included in the
previous release of Red Hat Developer Toolset. Below is a comprehensive list of new features in this
release.

A.4 .1. Changes Since Red Hat Developer T oolset 4 .1

The following features have been added since the release of GDB in Red Hat Developer Toolset 4.1:

New Feat ures

Support for tracepoints and fast tracepoints has been added in GDBserver for the following
architectures:

IBM z Systems

IBM System z9

IBM POWER

The support includes JIT compiling of conditional expressions in bytecode of fast tracepoints into
native code.

Support has been added for running interpreters on specified input and output devices.

GDB now supports a new mechanism that allows frontends to provide fully-featured GDB
console views as a better alternative to building such views on top of the -interpreter-exec
console command. See also the new new-ui command below. With that command, frontends
can now start GDB in the traditional command-line mode running in an embedded terminal-
emulator widget and create a separate MI interpreter running on a specified I/O device. In this way,
GDB handles line editing, history, tab completion, and other tasks in the console all by itself, and
the GUI uses the separate MI interpreter for its own control and synchronization, invisible to the
command line.

Support has been added for Fortran pointers to dynamic types.

Support has been added for Fortran structures with fields of dynamic types and arrays of
dynamic types.

Support has been added to GDBserver for recording btrace without having to maintain an active
GDB connection.

Support has been added for a negative repeat count in the x command. This allows for examining
memory backward from the given address. For example:

(gdb) bt
 #0 Func1 (n=42, p=0x40061c "hogehoge") at main.cpp:4
 #1 0x400580 in main (argc=1, argv=0x7fffffffe5c8) at main.cpp:8
(gdb) x/-5i 0x0000000000400580
 0x40056a <main(int, char**)+8>: mov %edi,-0x4(%rbp)
 0x40056d <main(int, char**)+11>: mov %rsi,-0x10(%rbp)

User Guide

90

 0x400571 <main(int, char**)+15>: mov $0x40061c,%esi
 0x400576 <main(int, char**)+20>: mov $0x2a,%edi
 0x40057b <main(int, char**)+25>:
 callq 0x400536 <Func1(int, char const*)>

Support has been added for multibit bitfields and enums in the target register descriptions.

A new convenience function, $_as_string(val), based on Python, which returns the textual
representation of a value, has been added. The function is useful for obtaining the text label of an
enum value.

Segmentation faults caused by Intel MPX boundary violations now display the type of violation
(upper or lower), the memory address accessed, and the memory bounds, along with the signal
received and code location. For example:

Program received signal SIGSEGV, Segmentation fault
Upper bound violation while accessing address 0x7fffffffc3b3
Bounds: [lower = 0x7fffffffc390, upper = 0x7fffffffc3a3]
0x0000000000400d7c in upper () at i386-mpx-sigsegv.c:68

New Co mmands

The following new commands have been added:

skip -file file, skip -gfile file-glob-pattern, skip -function function,
skip -rfunction regular-expression

A generalized form of the skip command, with new support for glob-style file names and
regular expressions for function names. Additionally, a file spec and a function spec may
now be combined.

maint info line-table REGEXP

Show the contents of the internal line-table data struture.

maint selftest

Run all compiled in GDB unit tests.

new-ui INTERP TTY

Start a new user interface instance running INTERP as interpreter, using the TTY file for
input and output.

The following command has been enhanced:

When issued with the group: or g: prefix, the catch syscall command now supports
catching groups of related system calls.

Pyt ho n Script ing Suppo rt

Python scripting support has been improved:

A new attribute, pending , has been added to gdb.Breakpoint objects, which indicates
whether the breakpoint is pending.

Three new events related to breakpoints have been added: gdb.breakpoint_created ,
gdb.breakpoint_modified , and gdb.breakpoint_deleted .

Appendix A. Changes in Version 6 .0

91

Change in t he Machine Int erface Int erpret er (GDB/MI)

The following change has been made the GDB/MI.

The =record-started async record now includes the method and format used for recording.
For example:

=record-started,thread-group="i1",method="btrace",format="bts"

The =thread-selected async record now includes the frame field. For example:

=thread-selected,id="3",frame={level="0",addr="0x00000000004007c0"}

A.5. Changes in OProfile

Red Hat Developer Toolset 6.0 is distributed with OProf ile 1.1.0 , which provides a number of bug
fixes and feature enhancements over the version included in the previous release of Red Hat
Developer Toolset. Below is a list of new features in this release.

A.5.1. Changes Since Red Hat Developer T oolset 4 .1

The following features have been added since the release of OProf ile included in Red Hat
Developer Toolset 4.1:

Support has been added for the following processors:

IBM z13 (only the ocount is supported)

Applied Micro X-Gene

Event lists for IBM POWER8 processors have been updated.

Support has been added for the following Intel processors:

2nd Generation Intel Atom (Goldmont)

6th Generation Intel Core, CPUID model 0x55 (Skylake)

7th Generation Intel Core (Kaby Lake)

The search logic has been corrected to properly store data in an archive and make use of the
archive data.

operf now only starts the command to be measured if the performance monitoring hardware is
properly set up. This fixes a bug that caused operf to start the command that is to be measured
regardless of whether the performance monitoring set up was successful.

A.6. Changes in st race

Red Hat Developer Toolset 6.0 is distributed with st race 4 .12 , which provides a number of bug
fixes.

A.7. Changes in SystemTap

User Guide

92

Red Hat Developer Toolset 6.0 is distributed with SystemTap 3.0 , which provides a number of bug
fixes and feature enhancements over the version included in the previous release of Red Hat
Developer Toolset. Below is a list of new features in this release.

A.7.1. Changes Since Red Hat Developer T oolset 4 .1

The following main features have been added since the release of SystemTap included in Red Hat
Developer Toolset 4.1:

Experimental monitor and interactive modes.

Optimized associative arrays.

Two types of function overloading.

Probe point brace-pattern expansion.

Security band-aid samples.

Improved string quoting and escaping.

Pretty printing of array aggregates.

Private scoping for variables.

Note

Incompatibility problems with old scripts can be resolved using the backward-compatibility
option, --compatible version, where version is the version of SystemTap for which the
script was written.

A.8. Changes in dyninst

Red Hat Developer Toolset 6.0 is distributed with dyninst 9 .2.0 , which provides a number of bug
fixes and feature enhancements over the version included in the previous release of Red Hat
Developer Toolset. Below is a list of new features in this release.

A.8.1. Changes Since Red Hat Developer T oolset 4 .1

The following features have been added since the release of dyninst included in Red Hat
Developer Toolset 4.1:

Expanded instruction support for x86 architectures to include the AVX, AVX2, and AVX-512
extensions, and many other fixes in x86 decoding.

Fixed rewriting for position-independent executables (PIE).

Improved SymtabAPI coverage using DWARF information.

Improved analysis of jump tables.

Safety fixes for memory allocation and tramp guards in the RTlib library.

A.9. Changes in Valgrind

Appendix A. Changes in Version 6 .0

93

Red Hat Developer Toolset 6.0 is distributed with Valgrind 3.12.0 , which provides a number of bug
fixes and enhancements over the version included in Red Hat Enterprise Linux and the previous
version of Red Hat Developer Toolset.

A.9.1. Changes Since Red Hat Developer T oolset 4 .1

The following bug fixes and enhancements have been added since the release of Valgrind in
Red Hat Developer Toolset 4.1:

Added meta mempool support for describing a custom allocator. This feature:

Automatically frees all chunks assuming that destroying a pool destroys all objects in the
pool.

Uses itself to allocate other memory blocks.

The maximum number of callers in a suppression entry is now equal to the maximum size for the -
-num-callers option (500). Note that setting the --gen-suppressions=yes|all option
similarly generates suppression containing up to --num-callers frames.

The gdbserver provided by Valgrind now accepts the catch syscall command.

JIT has been improved to lower the cost of instrumenting code blocks for the most common use
case (AMD64 and Intel 64 with Memcheck). The cost has been reduced by 10-15%.

Limited support has been added for certain AMD64 FMA4 instructions.

Support for the following architectures has been added:

64-bit ARM (AArch64)

IBM System z9

The valgrind-openmpi package has been removed from this release.

User Guide

94

Appendix B. Revision History

Revision 6 .0-7 Mon 14 Nov 2016 Robert Krátký
Release of Red Hat Developer Toolset 6.0 User Guide.

Revision 0.0-36 Tue 24 May 2016 Robert Krátký
Release of Red Hat Developer Toolset 4.1 User Guide.

Revision 0.0-33 Fri 13 Nov 2015 Robert Krátký
Release of Red Hat Developer Toolset 4.0 User Guide.

Revision 0.0-29 Wed 4 Nov 2015 Robert Krátký
Re-release of Red Hat Developer Toolset 4.0 Beta User Guide with a section on docker-formatted
container images.

Revision 0.0-28 Wed 14 Oct 2015 Robert Krátký
Release of Red Hat Developer Toolset 4.0 Beta User Guide.

Revision 0.0-25 Thu 4 June 2015 Robert Krátký
Update to reflect RHSCL 2.0 GA.

Revision 0.0-23 Thu 23 Apr 2015 Robert Krátký
Release of Red Hat Developer Toolset 3.1 User Guide.

Revision 0.0-17 Tue 10 Mar 2015 Robert Krátký
Release of Red Hat Developer Toolset 3.1 Beta User Guide.

Revision 0.0-16 Thu 13 Nov 2014 Robert Krátký
Release of Red Hat Developer Toolset 3.0 User Guide with minor post-GA fixes.

Revision 0.0-14 Thu 30 Oct 2014 Robert Krátký
Release of Red Hat Developer Toolset 3.0 User Guide.

Revision 0.0-10 Tue 07 Oct 2014 Robert Krátký
Release of Red Hat Developer Toolset 3.0 Beta-2 User Guide.

Revision 0.0-8 Tue Sep 09 2014 Robert Krátký
Release of Red Hat Developer Toolset 3.0 Beta-1 User Guide.

Index

A
addr2line

- features, New Features
- overview, binutils
- usage, Using Other Binary Tools

ar
- overview, binutils

Appendix B. Revision Hist ory

95

- usage, Using Other Binary Tools

as (see GNU assembler)

assembling (see GNU assembler)

B
binut ils

- documentation, Additional Resources
- features, Main Features
- installation, Installing binutils
- overview, binutils
- usage, Using the GNU Assembler, Using the GNU Linker, Using Other Binary Tools
- version, About Red Hat Developer Toolset, binutils

C
C programming language

- compiling, Using the C Compiler, Preparing a Program for Debugging
- running, Running a C Program
- support, GNU C Compiler

C+ + programming language
- compatibility, C++ Compatibility
- compiling, Using the C++ Compiler, Preparing a Program for Debugging
- running, Running a C++ Program
- support, GNU C++ Compiler

c+ + f ilt
- overview, binutils
- usage, Using Other Binary Tools

Cachegrind
- overview, Valgrind
- usage, Using Valgrind

Callgrind
- overview, Valgrind
- usage, Using Valgrind

compat ib ility
- Red Hat Developer Toolset, Compatibility

compiling (see GNU Compiler Collect ion)

D
debugging (see GNU Debugger)

Developer Toolset (see Red Hat Developer Toolset)

documentat ion
- Red Hat Product Documentation, Accessing Red Hat Product Documentation

DRD
- overview, Valgrind
- usage, Using Valgrind

User Guide

96

dwp
- overview, binutils
- usage, Using Other Binary Tools

dwz
- documentation, Additional Resources
- installation, Installing dwz
- overview, dwz
- usage, Using dwz
- version, About Red Hat Developer Toolset, dwz

Dyninst
- documentation, Additional Resources
- installation, Installing Dyninst
- overview, Dyninst
- usage, Using Dyninst
- version, About Red Hat Developer Toolset, Dyninst

E
elfedit

- features, New Features
- overview, binutils
- usage, Using Other Binary Tools

elfut ils
- documentation, Additional Resources
- installation, Installing elfutils
- overview, elfutils
- usage, Using elfutils
- version, About Red Hat Developer Toolset, elfutils

eu-addr2line
- overview, elfutils
- usage, Using elfutils

eu-ar
- overview, elfutils
- usage, Using elfutils

eu-elfcmp
- overview, elfutils
- usage, Using elfutils

eu-elf lin t
- overview, elfutils
- usage, Using elfutils

eu- f indtext rel
- overview, elfutils
- usage, Using elfutils

eu-make-debug-archive
- overview, elfutils
- usage, Using elfutils

Appendix B. Revision Hist ory

97

eu-nm
- overview, elfutils
- usage, Using elfutils

eu-objdump
- overview, elfutils
- usage, Using elfutils

eu-ranlib
- overview, elfutils
- usage, Using elfutils

eu-readelf
- overview, elfutils
- usage, Using elfutils

eu-siz e
- overview, elfutils
- usage, Using elfutils

eu-stack
- overview, elfutils

eu-st rings
- overview, elfutils
- usage, Using elfutils

eu-st rip
- overview, elfutils
- usage, Using elfutils

eu-unstrip
- overview, elfutils
- usage, Using elfutils

F
Fort ran programming language

- compiling, Using the Fortran Compiler
- running, Running a Fortran Program
- support, GNU Fortran Compiler

G
g+ + (see GNU Compiler Collect ion)

GAS (see GNU assembler)

GCC (see GNU Compiler Collect ion)

gcc (see GNU Compiler Collect ion)

GDB (see GNU Debugger)

gfort ran (see GNU Compiler Collect ion)

G lobal Support Services
- contacting, Contacting Global Support Services

GNU assembler

User Guide

98

- documentation, Additional Resources
- installation, Installing binutils
- overview, binutils
- usage, Using the GNU Assembler

GNU Binut ils (see b inut ils)

GNU Compiler Collect ion
- C support, GNU C Compiler
- C++ support, GNU C++ Compiler
- documentation, Additional Resources
- features, Main Features
- Fortran support, GNU Fortran Compiler
- installation, Installing the C Compiler, Installing the C++ Compiler, Installing the
Fortran Compiler
- overview, GNU Compiler Collection (GCC)
- usage, Using the C Compiler, Using the C++ Compiler, Using the Fortran Compiler,
Preparing a Program for Debugging
- version, About Red Hat Developer Toolset, GNU Compiler Collection (GCC)

GNU Debugger
- documentation, Additional Resources
- features, Main Features
- installation, Installing the GNU Debugger
- overview, GNU Debugger (GDB)
- preparation, Preparing a Program for Debugging
- usage, Running the GNU Debugger, Listing Source Code, Setting Breakpoints,
Starting Execution, Displaying Current Values, Continuing Execution
- version, About Red Hat Developer Toolset, GNU Debugger (GDB)

GNU linker
- documentation, Additional Resources
- installation, Installing binutils
- overview, binutils
- usage, Using the GNU Linker

GNU make
- documentation, Additional Resources
- installation, Installing make
- version, GNU make

gprof
- overview, binutils
- usage, Using Other Binary Tools

GSS (see G lobal Support Services)

H
Helgrind

- overview, Valgrind
- usage, Using Valgrind

help
- Global Support Services, Contacting Global Support Services
- Red Hat Product Documentation, Accessing Red Hat Product Documentation

Appendix B. Revision Hist ory

99

L
ld (see GNU linker)

linking (see GNU linker)

lt race
- documentation, Additional Resources
- installation, Installing ltrace
- overview, ltrace
- usage, Using ltrace
- version, About Red Hat Developer Toolset, ltrace

M
make

- building, Using make
- overview, GNU make

Makef ile
- usage, Using Makefiles

Massif
- overview, Valgrind
- usage, Using Valgrind

Memcheck
- overview, Valgrind
- usage, Using Valgrind

memstomp
- documentation, Additional Resources
- installation, Installing memstomp
- overview, memstomp
- usage, Using memstomp
- version, About Red Hat Developer Toolset

N
nm

- overview, binutils
- usage, Using Other Binary Tools

O
objcopy

- features, New Features
- overview, binutils
- usage, Using Other Binary Tools

objdump
- features, New Features
- overview, binutils
- usage, Using Other Binary Tools

ocount
- overview, OProfile

opannotate

User Guide

100

- overview, OProfile
- usage, Using OProfile

oparchive
- overview, OProfile
- usage, Using OProfile

operf
- overview, OProfile
- usage, Using OProfile

opgprof
- overview, OProfile
- usage, Using OProfile

ophelp
- overview, OProfile
- usage, Using OProfile

opimport
- overview, OProfile
- usage, Using OProfile

opjitconv
- overview, OProfile
- usage, Using OProfile

opreport
- overview, OProfile
- usage, Using OProfile

OProf ile
- documentation, Additional Resources
- installation, Installing OProfile
- overview, OProfile
- usage, Using OProfile
- version, About Red Hat Developer Toolset, OProfile

oprof iled
- overview, OProfile

R
ranlib

- overview, binutils
- usage, Using Other Binary Tools

readelf
- features, New Features
- overview, binutils
- usage, Using Other Binary Tools

Red Hat Developer Toolset
- compatibility, Compatibility
- Container Images, Using Red Hat Developer Toolset Container Images

Appendix B. Revision Hist ory

101

- Docker, Using Red Hat Developer Toolset Container Images
- Docker-formatted container images, Using Red Hat Developer Toolset Container
Images
- Dockerfiles, Using Red Hat Developer Toolset Container Images
- documentation, Additional Resources, Accessing Red Hat Product Documentation
- features, Main Features
- installation, Installing Red Hat Developer Toolset
- overview, About Red Hat Developer Toolset
- subscription, Getting Access to Red Hat Developer Toolset
- support, About Red Hat Developer Toolset
- uninstallation, Uninstalling Red Hat Developer Toolset
- update, Updating Red Hat Developer Toolset

Red Hat Enterprise Linux
- documentation, Additional Resources, Accessing Red Hat Product Documentation
- supported versions, Compatibility

Red Hat Subscript ion Management
- subscription, Using Red Hat Subscription Management

RHN Classic
- subscription, Using RHN Classic

S
scl (see Sof tware Collect ions)

siz e
- overview, binutils
- usage, Using Other Binary Tools

Sof tware Collect ions
- documentation, Additional Resources, Accessing Red Hat Product Documentation
- overview, About Red Hat Developer Toolset

stap
- overview, SystemTap
- usage, Using SystemTap, Using Dyninst with SystemTap

stap-merge
- overview, SystemTap
- usage, Using SystemTap

stap-prep
- overview, SystemTap
- usage, Installing SystemTap

stap- report
- overview, SystemTap
- usage, Using SystemTap

stap-server
- overview, SystemTap

stapdyn
- overview, SystemTap

User Guide

102

staprun
- overview, SystemTap
- usage, Using SystemTap

stapsh
- overview, SystemTap
- usage, Using SystemTap

st race
- documentation, Additional Resources
- installation, Installing strace
- overview, strace
- usage, Using strace
- version, About Red Hat Developer Toolset, strace

st rings
- overview, binutils
- usage, Using Other Binary Tools

st rip
- overview, binutils
- usage, Using Other Binary Tools

support
- Red Hat Developer Toolset, About Red Hat Developer Toolset

SystemTap
- documentation, Additional Resources
- installation, Installing SystemTap
- overview, SystemTap
- usage, Using SystemTap, Using Dyninst with SystemTap
- version, About Red Hat Developer Toolset, SystemTap

V
Valgrind

- building, Rebuilding Valgrind
- documentation, Additional Resources
- installation, Installing Valgrind
- overview, Valgrind
- usage, Using Valgrind
- version, About Red Hat Developer Toolset, Valgrind

version
- version, memstomp

Appendix B. Revision Hist ory

103

	Table of Contents
	Part I. Introduction
	Chapter 1. Red Hat Developer Toolset
	1.1. About Red Hat Developer Toolset
	What Is New in Red Hat Developer Toolset 6.0

	1.2. Main Features
	1.3. Compatibility
	1.4. Getting Access to Red Hat Developer Toolset
	1.4.1. Using Red Hat Subscription Management
	1.4.2. Using RHN Classic

	1.5. Installing Red Hat Developer Toolset
	1.5.1. Installing All Available Components
	1.5.2. Installing Individual Package Groups
	1.5.3. Installing Optional Packages
	1.5.4. Installing Debugging Information

	1.6. Updating Red Hat Developer Toolset
	1.6.1. Updating to a Minor Version
	1.6.2. Updating to a Major Version

	1.7. Uninstalling Red Hat Developer Toolset
	1.8. Using Red Hat Developer Toolset Container Images
	1.8.1. Using Pre-Built Container Images
	1.8.1.1. Pulling Pre-Built Container Images from the Registry
	1.8.1.2. Running Red Hat Developer Toolset Tools from Pre-Built Container Images

	1.8.2. Using Container Images Built from Dockerfiles
	1.8.2.1. Obtaining Dockerfiles
	1.8.2.2. Building Container Images
	1.8.2.3. Running Red Hat Developer Toolset Tools from Custom-Built Container Images

	1.9. Additional Resources
	Online Documentation
	See Also

	Part II. Development Tools
	Chapter 2. GNU Compiler Collection (GCC)
	2.1. GNU C Compiler
	2.1.1. Installing the C Compiler
	2.1.2. Using the C Compiler
	2.1.3. Running a C Program

	2.2. GNU C++ Compiler
	2.2.1. Installing the C++ Compiler
	2.2.2. Using the C++ Compiler
	2.2.3. Running a C++ Program
	2.2.4. C++ Compatibility
	2.2.4.1. C++ ABI

	2.3. GNU Fortran Compiler
	2.3.1. Installing the Fortran Compiler
	2.3.2. Using the Fortran Compiler
	2.3.3. Running a Fortran Program

	2.4. Additional Resources
	Installed Documentation
	Online Documentation
	See Also

	Chapter 3. GNU make
	3.1. Installing make
	3.2. Using make
	3.3. Using Makefiles
	3.4. Additional Resources
	Installed Documentation
	Online Documentation
	See Also

	Chapter 4. binutils
	4.1. Installing binutils
	4.2. Using the GNU Assembler
	4.3. Using the GNU Linker
	4.4. Using Other Binary Tools
	4.5. Additional Resources
	Installed Documentation
	Online Documentation
	See Also

	Chapter 5. elfutils
	5.1. Installing elfutils
	5.2. Using elfutils
	5.3. Additional Resources
	See Also

	Chapter 6. dwz
	6.1. Installing dwz
	6.2. Using dwz
	6.3. Additional Resources
	Installed Documentation
	See Also

	Part III. Debugging Tools
	Chapter 7. GNU Debugger (GDB)
	7.1. Installing the GNU Debugger
	7.2. Preparing a Program for Debugging
	Compiling Programs with Debugging Information
	Installing Debugging Information for Existing Packages

	7.3. Running the GNU Debugger
	7.4. Listing Source Code
	7.5. Setting Breakpoints
	Setting a New Breakpoint
	Listing Breakpoints
	Deleting Existing Breakpoints

	7.6. Starting Execution
	7.7. Displaying Current Values
	7.8. Continuing Execution
	7.9. Additional Resources
	Online Documentation
	See Also

	Chapter 8. strace
	8.1. Installing strace
	8.2. Using strace
	8.2.1. Redirecting Output to a File
	8.2.2. Tracing Selected System Calls
	8.2.3. Displaying Time Stamps
	8.2.4. Displaying a Summary

	8.3. Additional Resources
	Installed Documentation
	See Also

	Chapter 9. ltrace
	9.1. Installing ltrace
	9.2. Using ltrace
	9.2.1. Redirecting Output to a File
	9.2.2. Tracing Selected Library Calls
	9.2.3. Displaying Time Stamps
	9.2.4. Displaying a Summary

	9.3. Additional Resources
	Installed Documentation
	Online Documentation
	See Also

	Chapter 10. memstomp
	10.1. Installing memstomp
	10.2. Using memstomp
	10.3. Additional Resources
	Installed Documentation
	See Also

	Part IV. Performance Monitoring Tools
	Chapter 11. SystemTap
	11.1. Installing SystemTap
	11.2. Using SystemTap
	11.3. Additional Resources
	Installed Documentation
	Online Documentation
	See Also

	Chapter 12. Valgrind
	12.1. Installing Valgrind
	12.2. Using Valgrind
	12.3. Rebuilding Valgrind
	12.4. Additional Resources
	Installed Documentation
	Online Documentation
	See Also

	Chapter 13. OProfile
	13.1. Installing OProfile
	13.2. Using OProfile
	13.3. Additional Resources
	Installed Documentation
	Online Documentation
	See Also

	Chapter 14. Dyninst
	14.1. Installing Dyninst
	14.2. Using Dyninst
	14.2.1. Using Dyninst with SystemTap
	14.2.2. Using Dyninst as a Stand-alone Application

	14.3. Additional Resources
	Installed Documentation
	Online Documentation
	See Also

	Part V. Getting Help
	Chapter 15. Accessing Red Hat Product Documentation
	Red Hat Developer Toolset
	Red Hat Enterprise Linux

	Chapter 16. Contacting Global Support Services
	16.1. Gathering Required Information
	Background Information
	Diagnostics
	 Account and Contact Information
	Issue Severity

	16.2. Escalating an Issue
	16.3. Re-opening a Service Request
	16.4. Additional Resources
	Online Documentation

	Appendix A. Changes in Version 6.0
	A.1. Changes in binutils
	A.1.1. Changes Since Red Hat Enterprise Linux 6.8
	A.1.1.1. GNU Linker
	A.1.1.2. GNU Assembler
	A.1.1.3. Other Binary Tools

	A.1.2. Changes Since Red Hat Developer Toolset 4.1
	A.1.2.1. GNU Linker
	A.1.2.2. GNU Assembler

	A.2. Changes in elfutils
	A.2.1. Changes Since Red Hat Developer Toolset 4.1

	A.3. Changes in GCC
	A.3.1. Changes Since Red Hat Developer Toolset 4.1
	Platform-Specific Improvements

	A.4. Changes in GDB
	A.4.1. Changes Since Red Hat Developer Toolset 4.1
	New Features
	New Commands
	Python Scripting Support
	Change in the Machine Interface Interpreter (GDB/MI)

	A.5. Changes in OProfile
	A.5.1. Changes Since Red Hat Developer Toolset 4.1

	A.6. Changes in strace
	A.7. Changes in SystemTap
	A.7.1. Changes Since Red Hat Developer Toolset 4.1

	A.8. Changes in dyninst
	A.8.1. Changes Since Red Hat Developer Toolset 4.1

	A.9. Changes in Valgrind
	A.9.1. Changes Since Red Hat Developer Toolset 4.1

	Appendix B. Revision History
	Index

