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Preface

This book contains information on using Red Hat Enterprise Linux for Real Time.

Many industries and organizations need extremely high performance computing and may require low
and predictable latency, especially in the financial and telecommunications industries. Latency, or
response time, is defined as the time between an event and system response and is generally
measured in microseconds (μs).

For most applications running under a Linux environment, basic performance tuning can improve
latency sufficiently. For those industries where latency not only needs to be low, but also
accountable and predictable, Red Hat has now developed a 'drop-in' kernel replacement that
provides this. Red Hat Enterprise Linux for Real Time provides seamless integration with Red Hat
Enterprise Linux 7 and offers clients the opportunity to measure, configure, and record latency times
within their organization.

Preface
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Part I. Hardware

Selecting and configuring the right hardware is a critical part of setting up a realtime environment.
Hardware impacts the way that the system operates. System Management Interrupts, CPU cache
design, and NUMA utilization can all be handled in different ways. Hardware can vary from vendor to
vendor, and not all hardware is suited to realtime environments.

It is important when setting up a Red Hat Enterprise Linux for Real Time environment that the
application is designed in such a way that it interacts well with the available hardware. This section
contains information on the ways that Red Hat Enterprise Linux for Real Time uses hardware, and the
areas to look out for.
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Chapter 1. Processor Cores

A processor core is a physical Central Processing Unit (CPU) in a computer. Cores are responsible
for executing machine code. A socket is the connection between the processor and the motherboard
of the computer. The socket is the location on the motherboard that the processor is placed into. A
single core processor physically occupies one socket, and has one core available. A quad-core
processor physically occupies one socket and has four cores available.

When designing realtime applications, take the number of available cores into account. It is also
important to note how caches are shared among cores, and how the cores are physically connected.

If multiple cores are available to the application, use threads or processes to take advantage of them.
If a program is written without using these constructs, it will only run on one processor at a time. A
multi-core platform allows advantages to be gained through using different cores for different types of
operations.

1.1. Caches

Often, the various threads of an application will need to synchronize access to a shared resource,
such as a data structure. Performance can be improved in this case by knowing the cache layout of
the system. The Tuna tool can be used to help determine the cache layout. Try binding interacting
threads to cores, so that they share the cache. Cache sharing reduces memory faults by ensuring that
the mutual exclusion primitive (mutex, condvar, or similar) and the data structure itself use the same
cache.

1.2. Interconnects

It is important to examine the interconnects that occur between cores. As the number of cores in a
machine rise, the more difficult and expensive it becomes to provide uniform access to the memory for
all of them. Many hardware vendors now provide a transparent network of interconnects between
cores and memory, known as a NUMA (non-uniform memory access) architecture. On NUMA systems,
knowing the interconnect topology allows threads that communicate frequently to be placed on
adjacent cores.
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Chapter 2. Memory Allocation

Linux-based operating systems use a virtual memory system. Any address referenced by a user-
space application must be translated into a physical address. This is achieved through a
combination of page tables and address translation hardware in the underlying computer system.

One consequence of having the translation mechanism in between a program and the actual memory
is that the operating system can steal pages when required. This is achieved by marking a previously
used page table entry as invalid, so that even under normal memory pressure, the operating system
might scavenge pages from one application to give to another. This can have adverse affects on
systems that require deterministic behavior. Instructions that normally execute in a fixed amount of
time can take longer than normal because a page fault has been triggered.

2.1. Demand Paging

Under Linux, all memory addresses generated by a program get passed through an address
translation mechanism in the processor. The addresses are converted from a process-specific virtual
address to a physical memory address. This is referred to as virtual memory.

Figure 2.1. Red Hat  Enterprise Linux for Real T ime Virtual Memory System

The two main components in the translation mechanism are page tables and translation lookaside
buffers (TLBs). Page tables are multi-level tables in physical memory that contain mappings for
virtual to physical memory. These mappings are readable by the virtual memory translation hardware
in the processor. TLBs are caches for page table translations.

When a page table entry has been assigned a physical address, it is referred to as the resident
working set. When the operating system needs to free memory for other processes, it can remove
pages from the working set. When this happens, any reference to a virtual address within that page
will create a page fault, and the page will be reallocated. If the system is extremely low on physical
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memory, then this process will start to thrash, constantly stealing pages from processes, and never
allowing a process to complete. The virtual memory statistics can be monitored by looking for the 
pgfault value in the /proc/vmstat file.

TLBs are hardware caches of virtual memory translations. Any processor core with a TLB will check
the TLB in parallel with initiating a memory read of a page table entry. If the TLB entry for a virtual
address is valid, the memory read is aborted and the value in the TLB is used for the address
translation.

TLBs operate on the principle of locality of reference. This means that if code stays in one region of
memory for a significant period of time (such as loops or call-related functions) then the TLB
references avoid the main memory for address translations. This can significantly speed up
processing times. When writing deterministic and fast code, use functions that maintain locality of
reference. This can mean using loops rather than recursion. If recursion cannot be avoided, place
the recursion call at the end of the function. This is called tail-recursion, which makes the code work in
a relatively small region of memory and avoid fetching table translations from main memory.

A potential source of memory latency is called a minor page fault. They are created when a process
attempts to access a portion of memory before it has been initialized. In this case, the system will
need to perform some operations to fill the memory maps or other management structures. The
severity of a minor page fault can depend on system load and other factors, but they are usually
short and have a negligible impact.

A more severe memory latency is a major page fault. These can occur when the system has to
synchronize memory buffers with the disk, swap memory pages belonging to other processes, or
undertake any other Input/Output activity to free memory. This occurs when the processor references
a virtual memory address that has not had a physical page allocated to it. The reference to an empty
page causes the processor to execute a fault, and instructs the kernel code to allocate a page and
return, all of which increases latency dramatically.

When writing a multi-threaded application, it is important to consider the machine topology when
designing the data decomposition. Topology is the memory hierarchy, and includes CPU caches
and the NUMA node. Sharing data information very tightly on CPUs in different cache and NUMA
domains can lead to traffic problems and bottlenecks.

Contention can create drastic performance problems. On some hardware, the traffic on the various
memory buses are not subject to any fairness rules. Always check the hardware you are using in
order to avoid this.

Memory allocation errors cannot always be eliminated through the use of CPU affinity, scheduling
policies, and priorities. When an application shows a performance drop, it can be beneficial to check
if it is being affected by page faults. There are a number of ways of doing this, but a simple method is
to look at the process information in the /proc directory. For a particular process PID, use the cat
command to view the /proc/PID/stat file. The relevant entries in this file are:

Field 2 - filename of the executable

Field 10 - number of minor page faults

Field 12 - number of major page faults

When a process encounters a page fault all its threads will be frozen until the kernel handles the
fault. There are several ways to address this problem, although the best solution is to adjust the
source code to avoid page faults.

Example 2.1. Using the /proc/PID/stat File to  Check for Page Faults

This example uses the /proc/PID/stat file to check for page faults in a running process.
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Use the cat command and a pipe function to return only the second, tenth, and twelfth lines of the 
/proc/PID/stat file:

~]# cat /proc/3366/stat | cut -d\ -f2,10,12
(bash) 5389 0

In the above output, PID 3366 is bash, and it has reported 5389 minor page faults, and no major
page faults.

Note

For more information, or for further reading, the following book is related to the information
given in this section:

Linux System Programming by Robert Love

2.2. Using mlock t o Avoid Page I/O

The mlock and mlockall  system calls tell the system to lock to a specified memory range, and to
not allow that memory to be paged. This means that once the physical page has been allocated to
the page table entry, references to that page will always be fast.

There are two groups of mlock system calls available. The mlock and munlock calls lock and
unlock a specific range of addresses. The mlockall  and munlockall  calls lock or unlock the
entire program space.

Examine the use of mlock carefully and exercise caution. If the application is large, or if it has a
large data domain, the mlock calls can cause thrashing if the system cannot allocate memory for
other tasks.

Note

Always use mlock with care. Using it excessively can lead to an out of memory (OOM) error.
Do not put an mlockall  call at the start of your application. It is recommended that only the
data and text of the realtime portion of the application be locked.

Use of mlock will not guarantee that the program will experience no page I/O. It is used to ensure
that the data will stay in memory, but cannot ensure that it will stay in the same page. Other functions
such as move_pages and memory compactors can move data around despite the use of mlock.

Important

Unprivileged users must have the CAP_IPC_LOCK capability in order to be able to use 
mlockall  or mlock on large buffers. See the capabilities(7) man page for details.

Moreover, it is worth noting that memory locks are made on a page basis, and do not stack. It means
that if two dynamically allocated memory segments share the same page locked twice by calls to 
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mlock or mlockall , they will be unlocked by a single call to munlock for the corresponding page,
or by munlockall . Thus, the application must be aware of which pages it is unlocking in order to
prevent this double-lock/single-unlock problem.

The two most common alternatives to mitigate the double-lock/single-unlock problem are:

Tracking the memory areas allocated and locked, and creating a wrapper function that, before
unlocking a page, verifies how many users (allocations) that page has. This is the resource
counting principle used in device drivers.

Performing allocations considering the page size and aignment, in order to prevent a double-lock
in the same page.

The code examples below represent the second alternative.

The best way to use mlock depends on the application's needs and system resources. Although
there is no single solution for all the applications, the following code example can be used as a
starting point for the implementation of a function that will allocate and lock memory buffers.

Example 2.2. Using mlock in  an  Applicat ion

#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>

void *
alloc_workbuf(size_t size)
{
 void *ptr;
 int retval;
 /* 
  * alloc memory aligned to a page, to prevent two mlock() in the
  * same page.
  */
 retval = posix_memalign(&ptr, (size_t) sysconf(_SC_PAGESIZE), size);

 /* return NULL on failure */
 if (retval)
  return NULL;

 /* lock this buffer into RAM */
 if (mlock(ptr, size)) {
  free(ptr);
  return NULL;
 }
 return ptr;
}

void 
free_workbuf(void *ptr, size_t size)
{
 /* unlock the address range */
 munlock(ptr, size);
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 /* free the memory */
 free(ptr);
}

The function alloc_workbuf dynamically allocates a memory buffer and locks it. The memory
allocation is performed by posix_memalig  in order to align the memory area to a page. If the size
variable is smaller then a page size, regular malloc allocation will be able to use the remainder of
the page. But, to safely use this method advantage, no mlock calls can be made on regular malloc
allocations. This will prevent the double-lock/single-unlock problem. The function free_workbuf
will unlock and free the memory area.

In addition to the use of mlock and mlockall , it is possible to allocate and lock a memory area
using mmap with the MAP_LOCKED  flag. The following example is the implementation of the
aforementioned code using mmap.

Example 2.3. Using mmap in  an  Applicat ion

#include <sys/mman.h>
#include <stdlib.h>

void *
alloc_workbuf(size_t size)
{
 void *ptr;

 ptr = mmap(NULL, size, PROT_READ | PROT_WRITE,
            MAP_PRIVATE | MAP_ANONYMOUS | MAP_LOCKED, -1, 0);

 if (ptr == MAP_FAILED)
  return NULL;

 return ptr;
}

void
free_workbuf(void *ptr, size_t size)
{
 munmap(ptr, size);
}

As mmap allocates memory on a page basis, there are no two locks in the same page, helping to
prevent the double-lock/single-unlock problem. On the other hand, if the size variable is not a
multiple of the page size, the rest of the page is wasted. Furthermore, a call to munlockall  unlocks
the memory locked by mmap.

Another possibility for small-footprint applications is to call mlockall  prior to entering a time-
sensitive region of the code, followed by munlockall  at the end of the time-sensitive region. This
can reduce paging while in the critical section. Similarly, mlock can be used on a data region that is
relatively static or that will grow slowly but needs to be accessed without page I/O.
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Note

For more information, or for further reading, the following man pages are related to the
information given in this section:

capabilities(7)
mlock(2)
mlock(3)
mlockall(2)
mmap(2)
move_pages(2)
posix_memalign(3)
posix_memalign(3p)

Chapt er 2 . Memory Allocat ion

11



Chapter 3. Hardware Interrupts

Hardware interrupts are used by devices to communicate that they require attention from the operating
system. Some common examples are a hard disk signaling that is has read a series of data blocks,
or that a network device has processed a buffer containing network packets. Interrupts are also used
for asynchronous events, such as the arrival of new data from an external network. Hardware
interrupts are delivered directly to the CPU using a small network of interrupt management and
routing devices. This chapter describes the different types of interrupt and how they are processed by
the hardware and by the operating system. It also describes how the Red Hat Enterprise Linux for
Real Time kernel differs from the standard kernel in handling the types of interrupt.

A standard system receives many millions of interrupts over the course of its operation, including a
semi-regular " timer"  interrupt that periodically performs maintenance and system scheduling
decisions. It may also receive special kinds of interrupts, such as NMI (Non-Maskable Interrupts) and
SMI (System Management Interrupts).

Hardware interrupts are referenced by an interrupt number. These numbers are mapped back to the
piece of hardware that created the interrupt. This enables the system to monitor which device created
the interrupt and when it occurred.

In most computer systems, interrupts are handled as quickly as possible. When an interrupt is
received, any current activity is stopped and an interrupt handler is executed. The handler will preempt
any other running programs and system activities, which can slow the entire system down, and
create latencies. Red Hat Enterprise Linux for Real Time modifies the way interrupts are handled in
order to improve performance, and decrease latency.

Example 3.1. Viewing In terrupts on Your System

To examine the type and quantity of hardware interrupts received by a Linux system, use the cat
command to view /proc/interrupts:

~]$ cat /proc/interrupts
  CPU0       CPU1       
0:   13072311          0   IO-APIC-edge      timer
1:      18351          0   IO-APIC-edge      i8042
8:        190          0   IO-APIC-edge      rtc0
9:     118508       5415   IO-APIC-fasteoi   acpi
12:    747529      86120   IO-APIC-edge      i8042
14:   1163648          0   IO-APIC-edge      ata_piix
15:         0          0   IO-APIC-edge      ata_piix
16:  12681226     126932   IO-APIC-fasteoi   ahci, uhci_hcd:usb2, 
radeon, yenta, eth0
17:   3717841          0   IO-APIC-fasteoi   uhci_hcd:usb3, HDA, 
iwl3945
18:         0          0   IO-APIC-fasteoi   uhci_hcd:usb4
19:       577         68   IO-APIC-fasteoi   ehci_hcd:usb1, 
uhci_hcd:usb5
NMI:        0          0   Non-maskable interrupts
LOC:  3755270    9388684   Local timer interrupts
RES:  1184857    2497600   Rescheduling interrupts
CAL:    12471       2914   function call interrupts
TLB:    14555      15567   TLB shootdowns
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TRM:        0          0   Thermal event interrupts
SPU:        0          0   Spurious interrupts
ERR:        0
MIS:        0

The output shows the various types of hardware interrupt, how many have been received, which
CPU was the target for the interrupt, and the device that generated the interrupt.

3.1. Level-Signaled Interrupts

Level-signaled interrupts use a dedicated interrupt line to deliver voltage transitions.

The dedicated line can send one of two voltages to represent a binary 1 or binary 0. Once a signal
has been sent by the line, it will remain in that state until the CPU specifically resets it. This is
achieved by the CPU asking the generating device to stop asserting the line. This allows a number of
devices to share a single interrupt line. If the CPU has instructed a device to stop asserting the line,
and it remains asserted, there is another interrupt pending.

Although level-signaled interrupts require a high level of hardware logic in both the devices and the
CPU, they also provide a number of benefits. Not only can they be used by more than one device, but
they are almost completely unable to miss an interrupt.

3.2. Message-Signaled Interrupts

Many modern systems use message-signaled interrupts, which send the signal as a dedicated
message on a packet or message-based electrical bus.

One common example of this type of bus is PCI Express (Peripheral Component Interconnect
Express, or PCIe). These devices transmit a message as a type that the PCIe Host Controller
interprets as an interrupt message. The host controller then sends the message on to the CPU.

Depending on the hardware, a PCIe system might send the signal using a dedicated interrupt line
between the PCIe host controller and the CPU, or by sending the message over (for example) the CPU
HyperTransport bus. Many PCIe systems can also operate in legacy mode, where legacy interrupt
lines are implemented in order to support older operating systems, or Linux kernels booted with the
option pci=nomsi on the kernel command line.

3.3. Non-Maskable Interrupts

An interrupt is said to be masked when it has been disabled, or when the CPU has been instructed to
ignore it. A non-maskable interrupt (NMI) cannot be ignored, and is generally used only for critical
hardware errors.

NMIs are normally delivered over a separate interrupt line. When an NMI is received by the CPU, it
indicates that a critical error has occurred, and that the system is probably about to crash. The NMI
is generally the best indication of what might have caused the problem.

Because NMIs are not able to be ignored, they are also used by some systems as a hardware
monitor. The device sends a stream of NMIs, which are checked by an NMI handler in the processor.
If certain conditions are met - such as an interrupt not being triggered after a specified length of time -
the NMI handler can produce a warning and debugging information about the problem. This helps to
identify and prevent system lockups.
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3.4 . System Management  Interrupts

System management interrupts (SMIs) are used to offer extended functionality, such as legacy
hardware device emulation. They can also be used for system management tasks. SMIs are similar to
NMIs in that they use a special electrical signalling line directly into the CPU, and are generally not
able to be masked.

When an SMI is received, the CPU will enter System Management Mode (SMM). In this mode, a very
low-level handler routine is run to handle the SMIs. The SMM is typically provided directly from the
system management firmware, often the BIOS or the EFI.

SMIs are most often used to provide legacy hardware emulation. A common example is to emulate a
floppy disk drive. If there is no floppy disk device attached to the system, a virtualized network-
managed emulation can be used instead. When the operating system attempts to access the floppy
disk, an SMI is triggered and a handler provides the operating system with an emulated device
instead. The operating system then treats the emulation as though it were the legacy device itself.

Red Hat Enterprise Linux for Real Time can be adversely affected by SMIs because they take place
without the direct involvement of the operating system. A poorly written SMI handling routine may
consume many milliseconds of CPU time, and the operating system is not able to preempt the handler
if it needs to. This situation creates periodic high latencies in an otherwise well-tuned, highly
responsive system. Unfortunately, because SMI handlers can be used by a vendor to manage CPU
temperature and fan control, it is not possible to disable them. Instead, it is recommended that you
notify the vendor of the problem.

Note

You can attempt to isolate SMIs on a Red Hat Enterprise Linux for Real Time system using the 
hwlatdetect utility, which is available in the rt-tests package. This utility is designed to
measure periods of time during which the CPU has been stolen by an SMI handling routine.

3.5. Advanced Programmable Interrupt  Cont roller

The advanced programmable interrupt controller (APIC) was developed by Intel®  to provide the ability to
handle large amounts of interrupts, to allow each of these to be programmatically routed to a specific
set of available CPUs (and for this to be changed accordingly), to support inter-CPU communication,
and to remove the need for a large number of devices to share a single interrupt line.

APIC represents a series of devices and technologies that work together to generate, route, and
handle a large number of hardware interrupts in a scalable and manageable way. It uses a
combination of a local APIC built into each system CPU, and a number of Input/Outpt APICs that are
connected directly to hardware devices. When a hardware device generates an interrupt, it is detected
by the IO-APIC it is connected to, and then routed across the system APIC bus to a particular CPU.
The operating system knows which IO-APIC is connected to which device, and to which particular
interrupt line within that device because of a combination of information sources. Firstly, there is the
ACPI DSDT (Advanced Configuration and Power Interface Differentiated System Description Table)
that includes information about the specific wiring of the host system motherboard and peripheral
components. Secondly, a device provides certain information about its available interrupt sources.
Together, these two sets of data provide information about the overall interrupt hierarchy.

Complex APIC-based interrupt management strategies are possible, with the system APICs connected
in hierarchies, and delivering interrupts to CPUs in a load-balanced fashion rather than targeting a
specific CPU or set of CPUs.
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Part II. Application Architecture

The Red Hat Enterprise Linux for Real Time kernel provides a number of constructs that are designed
to help software developers build an application that performs to the highest possible standards.
This section discusses those features and how to use them.

Throughout this and the next sections, instructions are given for tuning the Red Hat Enterprise Linux
for Real Time kernel directly. Most changes can also be performed using a tool called Tuna. It has a
graphical interface, or can be run through the command shell.

Tuna can be used to change attributes of threads and interrupts, such as scheduling policy,
scheduler priority and processor affinity. It is designed to be used on a running system, and changes
take place immediately. This allows any application-specific measurement tools to see and analyze
system performance immediately after the changes have been made.

Part  II. Applicat ion Archit ect ure
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Chapter 4. Threads and Processes

Although all programs use threads and processes, Red Hat Enterprise Linux for Real Time handles
them in a different way to standard Red Hat Enterprise Linux. This chapter explains the Red Hat
Enterprise Linux for Real Time approach to threads and processes.

Each CPU core is limited in the amount of work it can handle. To achieve greater efficiency,
applications can execute different tasks simultaneously on multiple cores. This is called parallelizing.

Programs can be parallelized using threads. However, threads and processes are often confused, so
it is important to understand the differences in the terms.

Process

A UNIX® -style process is an operating system construct that contains:

1. Address mappings for virtual memory

2. An execution context (PC, stack, registers)

3. State/Accounting information

Linux processes started as exactly this style of process. When the concept of more than one
process running inside one address space was developed, Linux turned to a process
structure that shares an address space with another process. This works well, as long as
the process data structure is kept small. For the remainder of this document, the term
process refers to an independent address space, potentially containing multiple threads.

Thread

Strictly, a thread is a schedulable entity that contains:

1. A program counter (PC)

2. A register context

3. A stack pointer

Multiple threads can exist within a process.

When programming on a Red Hat Enterprise Linux for Real Time system, there are two potential ways
to parallelize the programs.

1. Use the fork and exec functions to create new processes

2. Use the Posix Threads (pthreads) API to create new threads within an already running
process

Note

Evaluate how the components will interact before deciding how to parallelize them. If the
components are independent of one another and will not interact very much or at all then
creating a new address space and running as a new process is usually the better option. If,
however, the components will need to share data or communicate frequently, running them as
threads within one address space will usually be more efficient.
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Note

For more information, or for further reading, the following man pages and books are related to
the information given in this section:

fork(2)
exec(2)
Programming with POSIX Threads, David R. Butenhof, Addison-Wesley, ISBN 0-201-63392-2
Advanced Programming in the UNIX Environment, 2nd Ed., W. Richard Stevens and Stephen A.
Rago, Addison-Wesley, ISBN 0-201-43307-9
“POSIX Threads Programming” , Blaise Barney, Lawrence Livermore National Laboratory,
http://www.llnl.gov/computing/tutorials/pthreads/
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Chapter 5. Priorities and Policies

All Linux threads have one of the following scheduling policies:

SCHED_OTHER  or SCHED_NORMAL: The default policy

SCHED_BATCH: Similar to SCHED_OTHER , but with a throughput orientation

SCHED_IDLE: A lower priority than SCHED_OTHER

SCHED_FIFO : A first in/first out realtime policy

SCHED_RR : A round-robin realtime policy

The policies that are critical to Red Hat Enterprise Linux for Real Time are SCHED_OTHER , 
SCHED_FIFO , and SCHED_RR .

SCHED_OTHER  or SCHED_NORMAL is the default scheduling policy for Linux threads. It has a
dynamic priority that is changed by the system based on the characteristics of the thread. Another
thing that effects the priority of SCHED_OTHER  threads is their nice value. The nice value is a number
between -20 (highest priority) and 19 (lowest priority). By default, SCHED_OTHER  threads have a
nice value of 0. Adjusting the nice value will change the way the thread is handled.

Threads with a SCHED_FIFO  policy will run ahead of SCHED_OTHER  tasks. Instead of using nice
values, SCHED_FIFO  uses a fixed priority between 1 (lowest) and 99 (highest). A SCHED_FIFO
thread with a priority of 1 will always be scheduled ahead of any SCHED_OTHER  thread.

The SCHED_RR  policy is very similar to the SCHED_FIFO  policy. In the SCHED_RR  policy, threads of
equal priority are scheduled in a round-robin fashion. Generally, SCHED_FIFO  is preferred over 
SCHED_RR .

SCHED_FIFO  and SCHED_RR  threads will run until one of the following events occurs:

The thread goes to sleep or begins waiting for an event

A higher-priority realtime thread becomes ready to run

If one of these events does not occur, the threads will run indefinitely on that processor, and lower-
priority threads will not be given a chance to run. This can result in system service threads failing to
run, and operations such as memory swapping and filesystem data flushing not occurring as
expected.
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Chapter 6. Affinity

Each thread and interrupt source in the system has a processor affinity property. The operating system
scheduler uses this information to determine which threads and interrupts to run on which CPU.

Setting processor affinity, along with effective policy and priority settings, can help to achieve the
maximum possible performance. Applications will always need to compete for resources, especially
CPU time, with other processes. Depending on the application, related threads are often run on the
same core. Alternatively, one application thread can be allocated to one core.

Systems that perform multitasking are naturally more prone to indeterminism. Even high priority
applications may be delayed from executing while a lower priority application is in a critical section
of code. Once the low priority application has exited the critical section, the kernel may safely
preempt the low priority application and schedule the high priority application on the processor.
Additionally, migrating processes from one CPU to another can be costly due to cache invalidation.
Red Hat Enterprise Linux for Real Time includes tools that address some of these issues and allow
latencies to be better controlled.

Affinity is represented as a bitmask, where each bit in the mask represents a CPU core. If the bit is set
to 1, then the thread or interrupt may run on that core; if 0 then the thread or interrupt is excluded from
running on the core. The default value for an affinity bitmask is all ones, meaning the thread or
interrupt may run on any core in the system.

By default, processes can run on any CPU. However, processes can be instructed to run on a
predetermined selection of CPUs, by changing the affinity of the process. Child processes inherent
the CPU affinities of their parents.

Some of the more typical affinity setups include:

Reserve one CPU core for all system processes and allow the application to run on the remainder
of the core, with one CPU core per application thread.

Allow a thread application and a given kernel thread (such as the network softirq or a driver
thread) on the same CPU.

Pair producer and consumer threads on each CPU.

It is recommended that affinity settings are designed in conjunction with the program, to better match
the expected behavior.

The usual practice for tuning affinities on a realtime system is to determine how many cores are
needed to run the application and then isolate those cores. This can be achieved using the Tuna
tool, or through the use of shell scripts to modify the bitmask value. The taskset command can be
used to change the affinity of a process, while modifying the /proc filesystem entry changes the
affinity of an interrupt.

Note

For more information, or for further reading, the taskset(1) man page is related to the
information given in this section.

6.1. Using the taskset Command to Set  Processor Affinit y
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The taskset command sets and checks affinity information for a given process. These tasks can
also be achieved using the Tuna tool.

Use the taskset command with the -p or --pid  option and the PID of the process to be checked. The
-c or --cpu-list option displays the information as a numerical list of cores, instead of as a
bitmask.

The following command checks the affinity of the process with PID 1000. In this case, PID 1000 is
permitted to use either CPU 0 or CPU 1:

~]# taskset -p -c 1000
pid 1000's current affinity list: 0,1

The affinity can be set by specifying the number of the CPU to which to bind the process. In this
example, PID 1000 could previously run on either CPU 0 or CPU 1, and the affinity has been
changed so that it can only run on CPU 1:

~]# taskset -p -c 1 1000
pid 1000's current affinity list: 0,1
pid 1000's new affinity list: 1

To define more than one CPU affinity, list both CPU numbers, separated by a comma:

~]# taskset -p -c 0,1 1000
pid 1000's current affinity list: 1
pid 1000's new affinity list: 0,1

The taskset command can also be used to start a new process with a particular affinity. This
command will run the /bin/my-app application on CPU 4:

~]# taskset -c 4 /bin/my-app

For further granularity, the priority and policy can also be set. This command runs the /bin/my-app
application on CPU 4, with a SCHED_FIFO  policy and a priority of 78:

~]# taskset -c 5 chrt -f 78 /bin/my-app

6.2. Using the sched_setaffinity() System Call to Set  Processor Affinit y

In addition to the taskset command, processor affinity can also be set using the 
sched_setaffinity() system call.

The following code excerpt retrieves the CPU affinity information for a specified PID. If the PID passed
to it is 0, it will return the affinity information for the current process:

int sched_setaffinity(pid_t pid, size_t setsize, const cpu_set_t *set)
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Note

For more information, or for further reading, the following man page is related to the
information given in this section:

sched_setaffinity(2)
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Chapter 7. Thread Synchronization

When threads require access to shared resources, it is coordinated using thread synchronization. The
three thread synchronization mechanisms used on Linux are mutexes, barriers, and condvars.

7.1. Mutexes

The word mutex is derived from the term mutual exclusion. A mutex is a POSIX threads construct, and
is created using the pthread_create_mutex library call. A mutex serializes access to each section
of code, so that only one thread of an application is running the code at any one time.

Similar to a mutex is a futex, or Fast User muTEX, which is an internal mechanism used to
implement mutexes. Futexes use shared conventions between the kernel and the C library. This
allows an uncontended mutex to be locked or freed without a context switch to kernel space.

7.2. Barriers

Barriers operate in a very different way to other thread synchronization methods. Instead of
serializing access to code regions, barriers block all threads until a pre-determined number of them
have accumulated. The barrier will then allow all threads to continue. Barriers are used in situations
where a running application needs to be certain that all threads have completed their tasks before
execution can continue.

7.3. Condvars

A condvar, or condition variable, is a POSIX thread construct that waits for a particular condition to
be achieved before proceeding. In general the condition being signaled pertains to the state of data
that the thread shares with another thread. For example, a condvar can be used to signal that a data
entry has been put into a processing queue and a thread waiting to process data from the queue can
now proceed.

7.4 . Other Types of Synchronizat ion

Prior to the advent of POSIX threads, thread synchronization occurred between processes. The most
common mechanisms were the System V IPC calls for shared memory, message queues, and
semaphores. The use of the System V IPC calls has now been deprecated in favor of POSIX thread
calls.
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Chapter 8. Sockets

A socket is a bi-directional data transfer mechanism. They are used to transfer data between two
processes. The two processes can be running on the same system as Unix-domain or loopback
sockets, or on different systems as network sockets.

There are no special options or restriction to using sockets on a Red Hat Enterprise Linux for Real
Time system.

8.1. Socket  Opt ions

There are two socket options that are relevant to Red Hat Enterprise Linux for Real Time applications:
TCP_NODELAY  and TCP_CORK.

TCP_NODELAY

TCP is the most common transport protocol, which means it is often used to solve many different
needs. As new application and hardware features are developed, and kernel architecture
optimizations are made, TCP has had to introduce new heuristics to handle the changes effectively.

These heuristics can result in a program becoming unstable. Because the behavior changes as the
underlying operating system components change, they should be treated with care.

One example of heuristic behavior in TCP is that small buffers are delayed. This allows them to be
sent as one network packet. This generally works well, but it can also create latencies. For Red Hat
Enterprise Linux for Real Time applications, TCP_NODELAY  is a socket option that can be used to
turn this behavior off. It can be enabled through the setsockopt sockets API, with the following
function:

int one = 1;
setsockopt(descriptor, SOL_TCP, TCP_NODELAY, &one, sizeof(one));

For this option to be used effectively, the applications must avoid doing small buffer writes, as TCP
will send these buffers as individual packets. TCP_NODELAY  can also interact with other
optimization heuristics to result in poor overall performance.

If applications have several buffers that are logically related and that should be sent as one packet it
will achieve better latency and performance by building a contiguous packet before sending. The
packet can then be sent as one using a socket with TCP_NODELAY  enabled.

Alternatively, if the memory buffers are logically related but not already contiguous, use them to build
an I/O vector. It can then be passed to the kernel using writev on a socket with TCP_NODELAY
enabled.

TCP_CORK

Another TCP socket option that works in a similar way is TCP_CORK. When enabled, TCP will delay
all packets until the application removes the cork, and allows the stored packets to be sent. This
allows applications to build a packet in kernel space, which is useful when different libraries are
being used to provide layer abstractions.

The TCP_CORK option can can be enabled by using the following function:

int one = 1;
setsockopt(descriptor, SOL_TCP, TCP_CORK, &one, sizeof(one));
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Enabling TCP_CORK is often referred to as corking the socket.

In a situation where the kernel is not able to identify when to remove the cork, it can be manually
removed with the function:

int zero = 0;
setsockopt(descriptor, SOL_TCP, TCP_CORK, &zero, sizeof(zero));

Once the socket is uncorked, TCP will send the accumulated logical package immediately, without
waiting for further packets from the application.

Example 8.1. Using TCP_NODELAY  and TCP_CORK

This example demonstrates the performance impact that TCP_NODELAY  and TCP_CORK can
have on an application.

The server waits for packets of 30 bytes and then sends a 2 byte packet in response. To start with,
define the TCP port and the number of packets it should process. In this example, it is 10,000
packets:

~]$ ./tcp_nodelay_server 5001 10000

The server does not need to have any socket options set.

If the client is run without any arguments, the default socket options will be used. Use the 
no_delay option to enable TCP_NODELAY  socket options. Use the cork option to enable 
TCP_CORK. In all cases it will send 15 packets, each of two bytes, and wait for a response from
the server.

This example uses a loopback interface to demonstrate three variations.

In the first variation, neither TCP_NODELAY  nor TCP_CORK are in use. This is a baseline
measurement. TCP coalesces writes and has to wait to check if the application has more data than
can optimally fit in the network packet:

~]$ ./tcp_nodelay_client localhost 5001 10000
10000 packets of 30 bytes sent in 400129.781250 ms: 0.749757 bytes/ms

The second variation uses TCP_NODELAY  only. TCP is instructed not to coalesce small packets,
but to send buffers immediately. This improves performance significantly, but creates a large
number of network packets for each logical packet:

~]$ ./tcp_nodelay_client localhost 5001 10000 no_delay
10000 packets of 30 bytes sent in 1649.771240 ms: 181.843399 bytes/ms 
using TCP_NODELAY

The third variation uses TCP_CORK only. It halves the time required to the send the same number
of logical packets. This is because TCP coalesces full logical packets in its buffers, and sends
fewer overall network packets:

~]$ ./tcp_nodelay_client localhost 5001 10000 cork
10000 packets of 30 bytes sent in 850.796448 ms: 352.610779 bytes/ms 
using TCP_CORK

Red Hat  Ent erprise Linux for Real T ime 7  Reference Guide

24



In this scenario, TCP_CORK is the best technique to use. It allows the application to precisely
convey the information that a packet is finished and must be sent without delay. When developing
programs, if they need to send bulk data from a file, consider using TCP_CORK with sendfile.

Note

For more information, or for further reading, the following man page and example applications
are related to the information given in this section:

sendfile(2)
“TCP nagle sample applications” , which are example applications of both socket options,
written in C. To download them, right-click and save from the following links:

https://github.com/acmel/libautocork/blob/master/tcp_nodelay_client.c
https://github.com/acmel/libautocork/blob/master/tcp_nodelay_server.c
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Chapter 9. Shared Memory

One of the main advantages of program threads is that all threads created in one process context
share the same address space. This means that all data structures become accessible to them.
However, it is not always appropriate for applications to use threads. And in these cases, processes
might need to share part of the address space. This can be achieved on both ordinary and realtime
kernels by using shared memory.

The original mechanism for sharing a memory region between two processes was the System V IPC 
shmem set of calls. These calls are quite capable, but overly complicated and cumbersome for the
vast majority of use cases. For this reason, they have been deprecated on the Red Hat
Enterprise Linux for Real Time kernel and should no longer be used.

Red Hat Enterprise Linux for Real Time uses POSIX shared memory calls, such as shm_open and 
mmap.

Note

For more information, or for further reading, the following man pages are related to the
information given in this section:

shm_open(3)
shm_overview(7)
mmap(2)
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Chapter 10. Shared Libraries

Dynamic Shared Objects (DSOs) are commonly referred to as a shared library, and are used to share
code between separate process address spaces. The DSO is loaded once by the ld.so  system
loader. From there, they are mapped into the address space of processes that require symbols from
the library. Until the first reference to a symbol is encountered it cannot be evaluated. Evaluating the
symbol only when it is referenced can be a source of latency. This is because memory pages can be
on disk, and caches can become invalidated. Evaluating symbols in advance is a safe side
procedure that can help to improve latency. .

Resolving symbols at program startup can slightly slow down program initialization. However, it also
avoids non-deterministic latencies during program execution that can be caused by symbol lookup.
Symbol resolution at application startup can be done using the LD_BIND_NOW environment
variable. Setting LD_BIND_NOW to any value other than null will cause the system loader to lookup
all unresolved symbols at program load time.

Note

For more information, or for further reading, the following man page is related to the
information given in this section:

ld.so(8)
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Part III. Library Services

System commands are used to manipulate priorities, processor affinity and scheduling policies. It is
also possible to manipulate these elements from within user applications using library functions.

This section explains how to select priorities, processor affinity, and scheduler policies using library
functions, and how to observe the results of those changes.

Red Hat  Ent erprise Linux for Real T ime 7  Reference Guide

28



Chapter 11. Setting the Scheduler

There are two different ways to configure and observe process configurations: the command line
utilities, and the Tuna graphical tool. This section uses the command line tools, but all actions can
also be performed using Tuna.

11.1. Using chrt t o Set  the Scheduler

The chrt is used to check and adjust scheduler policies and priorities. It can start new processes
with the desired properties, or change the properties of a running process.

To check the attributes of a particular process, use the --pid  or -p option alone to specify the
process ID (PID):

~]# chrt -p 468
pid 468's current scheduling policy: SCHED_FIFO
pid 468's current scheduling priority: 85

~]# chrt -p 476
pid 476's current scheduling policy: SCHED_OTHER
pid 476's current scheduling priority: 0

To set the scheduling policy of a process, use the appropriate command option:

Table 11.1. Policy Opt ions for the chrt Command

Short  opt ion Long opt ion Descript ion
-f --fifo Set schedule to SCHED_FIFO
-o --other Set schedule to SCHED_OTHER
-r --rr Set schedule to SCHED_RR

To set the priority of a process, specify the value before the PID of the process that is being changed.
The following command will set the process with PID 1000 to SCHED_FIFO , with a priority of 50:

~]# chrt -f -p 50 1000

The following command will set the same process (PID 1000) to SCHED_OTHER , with a priority of 0:

~]# chrt -o -p 0 1000

To start a new application with a given policy and priority, specify the name of the application (and
the path, if necessary) along with the attributes. The following command will start /b in /my-app , with
a policy of SCHED_FIFO  and a priority of 36:

~]# chrt -f 36 /bin/my-app
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Note

For more information, or for further reading, the following man page is related to the
information given in this section:

chrt(1)

11.2. Preempt ion

A process can voluntarily yield the CPU either because it has completed, or because it is waiting for an
event (such as data from a disk, a key press, or for a network packet).

A process can also involuntarily yield the CPU. This is referred to as preemption, and occurs when a
higher priority process wants to use the CPU. Preemption can have a particularly negative impact on
performance, and constant preemption can lead to a state known as thrashing. This problem occurs
when processes are constantly preempted and no process ever gets to run completely.

To check voluntary and involuntary preemption occurring on a single process, check the contents of
the /proc/PID/status, where PID is the PID of the process. The following command checks the
preemption of the process with PID 1000:

~]# grep voluntary /proc/1000/status
voluntary_ctxt_switches: 194529
nonvoluntary_ctxt_switches: 195338

Changing the priority of a task can help reduce involuntary preemption.

11.3. Using Library Calls to Set  Priorit y

Library calls are used to set the priority of non-realtime processes. These are:

nice

getpriority

setpriority

These functions operate by retrieving and adjusting the nice value of the process. The nicer a process
is, the lower its priority. Decreasing the nice value increments the priority.

Realtime processes use a different set of library calls to control policy and priority, which will be
detailed in this section.

Important

The following functions all require the inclusion of the sched.h header file. Ensure you
always check the return codes from functions. The appropriate man pages outline the various
codes used.

11.3.1. sched_getscheduler
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The sched_getscheduler() function retrieves the scheduler policy for a given PID:

#include <sched.h>

int policy;

policy = sched_getscheduler(pid_t pid);

The symbols SCHED_OTHER , SCHED_RR  and SCHED_FIFO  are also defined in sched.h. They can
be used to check the defined policy or to set the policy:

#include <stdio.h>
#include <unistd.h>
#include <sched.h>

main(int argc, char *argv[])
{
  pid_t pid;
  int policy;

  if (argc < 2)
    pid = 0;
  else
    pid = atoi(argv[1]);

  printf("Scheduler Policy for PID: %d  -> ", pid);

  policy = sched_getscheduler(pid);

  switch(policy) {
    case SCHED_OTHER: printf("SCHED_OTHER\n"); break;
    case SCHED_RR:   printf("SCHED_RR\n"); break;
    case SCHED_FIFO:  printf("SCHED_FIFO\n"); break;
    default:   printf("Unknown...\n");
  }
 }

11.3.2. sched_setscheduler

The scheduler policy and other parameters can be set using the sched_setscheduler() function.
Currently, realtime policies have one parameter, sched_priority. This parameter is used to adjust
the priority of the process.

The sched_setscheduler function requires three parameters, in the form: 
sched_setscheduler(pid_t pid, int policy, const struct sched_param *sp);

Note

The sched_setscheduler(2) man page lists all possible return values of 
sched_setscheduler, including the error codes.

If the pid is zero, the sched_setscheduler() function will act on the calling process.
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The following code excerpt sets the scheduler policy of the current process to SCHED_FIFO  and the
priority to 50:

struct sched_param sp = { .sched_priority = 50 };
int ret;

ret = sched_setscheduler(0, SCHED_FIFO, &sp);
if (ret == -1) {
  perror("sched_setscheduler");
  return 1;
}

11.3.3. sched_getparam and sched_setparam

The sched_setparam() function is used to set the scheduling parameters of a particular process.
This can then be verified using the sched_getparam() function.

Unlike the sched_getscheduler() function, which only returns the scheduling policy, the 
sched_getparam() function returns all scheduling parameters for the given process.

The following code excerpt reads the priority of a given realtime process and increments it by two:

struct sched_param sp;
int ret;

/* reads priority and increments it by 2 */
ret = sched_getparam(0, &sp);
sp.sched_priority += 2;

/* sets the new priority */
ret = sched_setparam(0, &sp);

Note: If the code above were used in a real application, it would also need to check the return values
from the function, and handle any errors appropriately.

Important

Be careful with incrementing priorities. Continually adding two as in this example might
eventually lead to an invalid priority.

11.3.4 . sched_get_priority_min and sched_get_priority_max

The sched_get_priority_min and sched_get_priority_max functions are used to check the
valid priority range for a given scheduler policy.

The only possible error in this call will occur if the specified scheduler policy is not known by the
system. In this case, the function will return -1 and errno  will be set to EINVAL:

#include <stdio.h>
#include <unistd.h>
#include <sched.h>
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main()
{

  printf("Valid priority range for SCHED_OTHER: %d - %d\n",
         sched_get_priority_min(SCHED_OTHER),
         sched_get_priority_max(SCHED_OTHER));

  printf("Valid priority range for SCHED_FIFO: %d - %d\n",
         sched_get_priority_min(SCHED_FIFO),
         sched_get_priority_max(SCHED_FIFO));

  printf("Valid priority range for SCHED_RR: %d - %d\n",
         sched_get_priority_min(SCHED_RR),
         sched_get_priority_max(SCHED_RR));
}

Note

Both SCHED_FIFO  and SCHED_RR  can be any number within the range of 1 to 99. POSIX is
not guaranteed to honor this range, however, and portable programs should use these calls.

11.3.5. sched_rr_get_interval

The SCHED_RR  policy differs slightly from the SCHED_FIFO  policy. SCHED_RR  allocates concurrent
processes that have the same priority in a round-robin rotation. In this way, each process is
assigned a timeslice. The sched_rr_get_interval() function will report the timeslice that has
been allocated to each process.

Even though POSIX requires that this function must work only with SCHED_RR  processes, the 
sched_rr_get_interval() function is able to retrieve the timeslice length of any process on
Linux.

The timeslice information is returned as a timespec, or the number of seconds and nanoseconds
since the base time of 00:00:00 GMT, 1 January 1970:

struct timespec {
  time_t tv_sec;  /* seconds */
  long tv_nsec; /* nanoseconds */
}

The sched_rr_get_interval  function requires the PID of the process, and a struct timespec:

#include <stdio.h>
#include <sched.h>

main()
{
   struct timespec ts;
   int ret;

   /* real apps must check return values */
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   ret = sched_rr_get_interval(0, &amp;ts);

   printf("Timeslice: %lu.%lu\n", ts.tv_sec, ts.tv_nsec);
}

The following commands run the test program sched_03, with varying policies and priorities.
Processes with a SCHED_FIFO  policy will return a timeslice of 0 seconds and 0 nanoseconds,
indicating that it is infinite:

~]$ chrt -o 0 ./sched_03
Timeslice: 0.38994072

~]$ chrt -r 10 ./sched_03
Timeslice: 0.99984800

~]$ chrt -f 10 ./sched_03
Timeslice: 0.0

Further Reading

For more information, or for further reading, the following man pages are related to the
information given in this section:

nice(2)
getpriority(2)
setpriority(2)
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Chapter 12. Creating Threads and Processes

Process and thread creation are subject to system load, and integral to resource allocation and CPU
time sharing. In some scenarios, a delay between an event occurring and it being handled is
acceptable. In most situations, however, it creates unwanted and unnecessary latencies. To prevent
this, the pool of processes or threads should always be created in advance, before they are called
upon to service a request. For more information see Chapter 4, Threads and Processes.
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Chapter 13. Mmap

The mmap system call allows a file (or parts of a file) to be mapped to memory. This allows the file
content to be changed with a memory operation, avoiding system calls and input/output operations.

Always synchronize the changes to disk, and plan for a process hang that could result in data loss.

Note

For more information, or for further reading, the following man page and book are related to
the information given in this section:

mmap(2)
Linux System Programming by Robert Love
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Chapter 14. System Calls

14.1. sched_yield

The sched_yield  function was originally designed to cause a processor to select a process other
than the running one. This type of request is prone to failure when issued from within a poorly-written
application.

When the sched_yield() function is used within processes with realtime priorities, it can display
unexpected behavior. The process that has called sched_yield  gets moved to the tail of the queue
of processes running at that priority. When this occurs in a situation where there are no other
processes running at the same priority, the process that called sched_yield  continues running. If
the priority of that process is high, it can potentially create a busy loop, rendering the machine
unusable.

In general, do not use sched_yield  on realtime processes.

14.2. getrusage()

The getrusage function is used to retrieve important information from a given process or its threads.
This will not provide all the information available, but will report on information such as context
switches and page faults.

It is interesting to instrument the application to provide information relevant to both performance
tuning and debugging activities. The getrusage() function is used to retrieve important information
from a given process or its threads, which would otherwise need to be cataloged from several
different files in the /proc/ directory and would be hard to synchronize with specific actions or
events on the application. Information such as the amount of voluntary and involuntary context
switches, major and minor page faults, amount of memory in use and a few other pieces of
information can be obtained with the getrusage() function.

Note

Not all the fields contained on the structure used to report getrusage() results are set by the
kernel. Some of them are kept for compatibility reasons only.

See the getrusage(2) man page for more information about this function.
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Chapter 15. Timestamping

15.1. Hardware Clocks

Multiprocessor systems such as NUMA or SMP have multiple instances of clock sources. The way
clocks interact among themselves and the way they react to system events, such as CPU frequency
scaling or entering energy economy modes, determine whether they are suitable clock sources for the
realtime kernel.

During boot time the kernel discovers the available clock sources and selects one to use. The
preferred clock source is the Time Stamp Counter (TSC), but if it is not available the High Precision
Event Timer (HPET) is the second best option. However, not all systems have HPET clocks and some
HPET clocks can be unreliable.

In the absence of TSC and HPET, other options include the ACPI Power Management Timer
(ACPI_PM), the Programmable Interval Timer (PIT) and the Real Time Clock (RTC). The last two
options are either costly to read or have a low resolution (time granularity), therefore they are sub-
optimal for the realtime kernel.

For the list of the available clock sources in your system, view the 
/sys/devices/system/clocksource/clocksource0/available_clocksource file:

~]# cat 
/sys/devices/system/clocksource/clocksource0/available_clocksource
tsc hpet acpi_pm

In the sample output above, the TSC, HPET and ACPI_PM clock sources are available.

The clock source currently in use can be inspected by reading the 
/sys/devices/system/clocksource/clocksource0/current_clocksource file:

~]# cat /sys/devices/system/clocksource/clocksource0/current_clocksource
tsc

It is possible to select a different clock source, from the list presented in the 
/sys/devices/system/clocksource/clocksource0/available_clocksource file. To do
so, write the name of the clock source into the 
/sys/devices/system/clocksource/clocksource0/current_clocksource file. For
example, the following command sets HPET as the clock source in use:

~]# echo hpet > 
/sys/devices/system/clocksource/clocksource0/current_clocksource

Important

The kernel selects the best available clock source. Overriding the selected clock source is not
recommended unless the implications are well understood.

While TSC is generally the preferred clock source, some of its hardware implementations may have
shortcomings. For example, some TSC clocks can stop when the system goes to an idle state, or
become out of sync when their CPUs enter deeper C-states (energy saving states) or perform speed-
or frequency-scaling operations.
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However, you can work around some of these TSC shortcomings by configuring additional kernel
boot parameters. For instance, the idle=poll parameter forces the clock to avoid entering the idle
state, and the processor.max_cstate=1 parameter prevents the clock from entering deeper C-
states. Note however that in both cases there would be an increase on energy consumption, as the
system would always run at top speed.

Note

For a comprehensive list of clock sources see the Timing Measurements chapter in
Understanding The Linux Kernel by Daniel P. Bovet and Marco Cesati.

15.1.1. Reading Hardware Clock Sources

Reading from the TSC is, basically, reading a register from the processor. Reading from the HPET
clock means reading a memory area. Reading from the TSC is faster, which provides a significant
performance advantage when timestamping hundreds of thousands of messages per second.

Using a simple program that reads the current clock source 10,000,000 times in a row, it is possible
to observe the duration required to read the clock sources available:

Example 15.1. Comparing the Cost  of  Reading Hardware Clock Sources

In this example, the clock source currently in use is TSC, as shown by the output of the cat
command. The time command is used to view the duration required to read the clock source 10
million times:

~]# cat 
/sys/devices/system/clocksource/clocksource0/current_clocksource
tsc
~]# time ./clock_timing

 real 0m0.601s
 user 0m0.592s
 sys 0m0.002s

The clock source is changed to HPET to compare the duration required to generate 10 million
timestamps:

~]# echo hpet > 
/sys/devices/system/clocksource/clocksource0/current_clocksource
~]# cat 
/sys/devices/system/clocksource/clocksource0/current_clocksource
hpet
~]# time ./clock_timing

 real 0m12.263s
 user 0m12.197s
 sys 0m0.001s

The steps are repeated with the ACPI_PM clock source:

~]# echo acpi_pm > 
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/sys/devices/system/clocksource/clocksource0/current_clocksource
~]# cat 
/sys/devices/system/clocksource/clocksource0/current_clocksource
acpi_pm
~]# time ./clock_timing

 real 0m24.461s
 user 0m0.504s
 sys 0m23.776s

The time(1) man page provides detailed information on how to use the command and interpret its
output. The example above uses the following categories:

real : The total time spent beginning from program invocation until the process ends. real
includes user and sys times, and will usually be larger than the sum of the latter two. If this
process is interrupted by an application with higher priority, or by a system event such as a
hardware interrupt (IRQ), this time spent waiting is also computed under real .

user: The time the process spent in user space, performing tasks that did not require kernel
intervention.

sys: The time spent by the kernel while performing tasks required by the user process. These
tasks include opening files, reading and writing to files or I/O ports, memory allocation, thread
creation and network related activities.

As seen from the results of Example 15.1, “Comparing the Cost of Reading Hardware Clock Sources” ,
the efficiency of generating timestamps, in descending order, is: TSC, HPET, ACPI_PM. This is
because of the increased overhead to access time values from the HPET and ACPI_PM timers.

15.2. POSIX Clocks

POSIX is a standard for implementing and representing time sources. In contrast to the hardware
clock, which is selected by the kernel and implemented across the system; the POSIX clock can be
selected by each application, without affecting other applications in the system.

CLOCK_REALTIME: it represents the time in the real world, also referred to as 'wall time' meaning
the time as read from the clock on the wall. This clock is used to timestamp events, and when
interfacing with the user. It can be modified by an user with the right privileges. However, user
modification should be used with caution as it can lead to erroneous data if the clock has its
value changed between two readings.

CLOCK_MONOTONIC : represents the time monotonically increased since the system boot. This
clock cannot be set by any process, and is the preferred clock for calculating the time difference
between events. The following examples in this section use CLOCK_MONOTONIC  as the POSIX
clock.

Note

For more information on POSIX clocks see the following man page and book:

clock_gettime()
Linux System Programming by Robert Love
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The function used to read a given POSIX clock is clock_gettime(), which is defined at 
<time.h>. The clock_gettime() command takes two parameters: the POSIX clock ID and a
timespec structure which will be filled with the duration used to read the clock. The following example
shows the function to measure the cost of reading the clock:

Example 15.2. Using clock_gettime() to  Measure the Cost  of  Reading POSIX Clocks

#include <time.h>

main()
{
 int rc;
 long i;
 struct timespec ts;

 for(i=0; i<10000000; i++) {
  rc = clock_gettime(CLOCK_MONOTONIC, &ts);
 }
}

You can improve upon the example above by adding more code to verify the return code of 
clock_gettime(), to verify the value of the rc variable, or to ensure the content of the ts structure
is to be trusted. The clock_gettime() manpage provides more information to help you write more
reliable applications.

Important

Programs using the clock_gettime() function must be linked with the rt library by adding 
'-lrt' to the gcc command line:

~]$ gcc clock_timing.c -o clock_timing -lrt

15.2.1. CLOCK_MONOTONIC_COARSE and CLOCK_REALTIME_COARSE

Functions such as clock_gettime() and gettimeofday() have a counterpart in the kernel, in
the form of a system call. When a user process calls clock_gettime(), the corresponding C
library (glibc) routine calls the sys_clock_gettime() system call, which performs the requested
operation and then returns the result to the user process.

However, this context switch from user application to kernel has a cost. Even though this cost is very
low, if the operation is repeated thousands of times, the accumulated cost can have an impact on the
overall performance of the application.

To avoid the context switch to the kernel, thus making it faster to read the clock, support for the 
CLOCK_MONOTONIC_COARSE and CLOCK_REALTIME_COARSE POSIX clocks was created in the
form of a VDSO library function. The _COARSE variants are faster to read and have a precision (also
known as resolution) of one millisecond (ms).

15.2.2. Using clock_getres() to Compare Clock Resolut ion
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Using the clock_getres() function you can check the resolution of a given POSIX clock. 
clock_getres() uses the same two parameters as clock_gettime(): the ID of the POSIX clock
to be used, and a pointer to the timespec structure where the result is returned. The following function
enables you to compare the precision between CLOCK_MONOTONIC  and 
CLOCK_MONOTONIC_COARSE:

main()
{
int rc;
struct timespec res;

 rc = clock_getres(CLOCK_MONOTONIC, &res);
 if (!rc)
  printf("CLOCK_MONOTONIC: %ldns\n", res.tv_nsec); 
 rc = clock_getres(CLOCK_MONOTONIC_COARSE, &res);
 if (!rc)
  printf("CLOCK_MONOTONIC_COARSE: %ldns\n", res.tv_nsec); 
}

Example 15.3. Sample Output  of  clock_getres

TSC:
 ~]# ./clock_resolution
 CLOCK_MONOTONIC: 1ns
 CLOCK_MONOTONIC_COARSE: 999848ns  (about 1ms)

HPET:
 ~]# ./clock_resolution
 CLOCK_MONOTONIC: 1ns
 CLOCK_MONOTONIC_COARSE: 999848ns  (about 1ms)

ACPI_PM:
 ~]# ./clock_resolution
 CLOCK_MONOTONIC: 1ns
 CLOCK_MONOTONIC_COARSE: 999848ns  (about 1ms)

15.2.3. Using C Code to Compare Clock Resolut ion

Using the following code snippet it is possible to observe the format of the data read from the 
CLOCK_MONOTONIC  POSIX clock. All nine digits in the tv_nsec field of the timespec structure are
meaningful as the clock has a nanosecond resolution. The example function, named 
clock_test.c, is as follows:

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

main()
{
 int i;
 struct timespec ts;
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 for(i=0; i<5; i++) {
  clock_gettime(CLOCK_MONOTONIC, &ts);
  printf("%ld.%ld\n", ts.tv_sec, ts.tv_nsec);
  usleep(200);
 }
}

Example 15.4 . Sample Output  of  clock_test.c and clock_test_coarse.c

As specified in the code above, the function reads the clock five times, with 200 microseconds
between each reading:

~]# gcc clock_test.c -o clock_test -lrt
~]# ./clock_test
218449.986980853
218449.987330908
218449.987590716
218449.987849549
218449.988108248

Using the same source code, renaming it to clock_test_coarse.c and replacing 
CLOCK_MONOTONIC  with CLOCK_MONOTONIC_COARSE, the result would look something like:

~]# ./clock_test_coarse
218550.844862154
218550.844862154
218550.844862154
218550.845862154
218550.845862154

The _COARSE clocks have a one millisecond precision, therefore only the first three digits of the 
tv_nsec field of the timespec structure are significant. The result above could be read as:

~]# ./clock_test_coarse
218550.844
218550.844
218550.844
218550.845
218550.845

The _COARSE variants of the POSIX clocks are particularly useful in cases where timestamping can
be performed with millisecond precision. The benefits are more evident on systems which use
hardware clocks with high costs for the reading operations, such as ACPI_PM.

15.2.4 . Using the time Command to Compare Cost  of Reading Clocks

Using the time command to read the clock source 10 million times in a row, you can compare the
costs of reading CLOCK_MONOTONIC  and CLOCK_MONOTONIC_COARSE representations of the
hardware clocks available. The following example uses TSC, HPET and ACPI_PM hardware clocks.
For more information on how to decipher the output of the time command see Section 15.1.1,
“Reading Hardware Clock Sources” .
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Example 15.5. Comparing the Cost  of  Reading POSIX Clocks

TSC:
 ~]# time ./clock_timing_monotonic

 real 0m0.567s
 user 0m0.559s
 sys 0m0.002s

 ~]# time ./clock_timing_monotonic_coarse

 real 0m0.120s
 user 0m0.118s
 sys 0m0.001s

HPET:
 ~]# time ./clock_timing_monotonic

 real 0m12.257s
 user 0m12.179s
 sys 0m0.002s

 ~]# time ./clock_timing_monotonic_coarse

 real 0m0.119s
 user 0m0.118s
 sys 0m0.000s

ACPI_PM:
 ~]# time ./clock_timing_monotonic

 real 0m25.524s
 user 0m0.451s
 sys 0m24.932s

 ~]# time ./clock_timing_monotonic_coarse

 real 0m0.119s
 user 0m0.117s
 sys 0m0.001s

As seen from Example 15.5, “Comparing the Cost of Reading POSIX Clocks” , the sys time (the time
spent by the kernel to perform tasks required by the user process) is greatly reduced when the 
_COARSE clocks are used. This is particularly evident in the ACPI_PM clock timings, which indicates
that _COARSE variants of POSIX clocks yield high performance gains on clocks with high reading
costs.
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Chapter 16. More Information

16.1. Report ing Bugs

Diagnosing a Bug

Before you file a bug report, follow these steps to diagnose where the problem has been introduced.
This will greatly assist in rectifying the problem.

1. Check that you have the latest version of the Red Hat Enterprise Linux 7 kernel, then boot into
it from the GRUB  menu. Try reproducing the problem with the standard kernel. If the problem
still occurs, report a bug against Red Hat Enterprise Linux 7.

2. If the problem does not occur when using the standard kernel, then the bug is probably the
result of changes introduced in the Red Hat Enterprise Linux for Real Time specific
enhancements Red Hat has applied on top of the baseline (3.10.0) kernel.

Report ing a Bug

If you have determined that the bug is specific to Red Hat Enterprise Linux for Real Time follow these
instructions to enter a bug report:

1. Create a Bugzilla account if you do not have it yet.

2. Click on Enter A New Bug Report. Log in if necessary.

3. Select the Red Hat classification.

4. Select the Red Hat Enterprise Linux 7 product.

5. If it is a kernel issue, enter kernel-rt as the component. Otherwise, enter the name of the
affected user-space component.

6. Continue to enter the bug information by giving a detailed problem description. When
entering the problem description be sure to include details of whether you were able to
reproduce the problem on the standard Red Hat Enterprise Linux 7 kernel.
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