
Red Hat Developer Toolset
1.1

Software Collections Guide

A guide to Software Collections for Red Hat Enterprise Linux

Edition 0

Petr Kovář
Red Hat Engineering Content Services

pkovar@redhat.com

Red Hat Developer Toolset 1.x Software Collections Guide 1

mailto:pkovar@redhat.com

Legal Notice
Copyright © 2013 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at
http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this
document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section
4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo,
and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other
countries.

All other trademarks are the property of their respective owners.

1801 Varsity Drive
Raleigh, NC 27606-2072 USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701

2 Legal Notice

http://creativecommons.org/licenses/by-sa/3.0/

Abstract
The Software Collections Guide provides an explanation of Software Collections and details how to build
and package them. Developers and system administrators who have a basic understanding of software
packaging with RPM packages, but who are new to the concept of Software Collections, can use this
Guide to get started with Software Collections.

Red Hat Developer Toolset 1.x Software Collections Guide 3

Table of Contents
Preface

1. Document Conventions
1.1. Typographic Conventions
1.2. Pull-quote Conventions
1.3. Notes and Warnings

2. Getting Help and Giving Feedback
2.1. Do You Need Help?
2.2. We Need Feedback!

3. Acknowledgments

1. Introducing Software Collections
1.1. Why Package Software with RPM?
1.2. What Are Software Collections?
1.3. Enabling Support for Software Collections
1.4. The File System Hierarchy
1.5. Software Collection Scriptlets
1.6. Package Layout

1.6.1. Meta Package
1.6.2. Packages in the Software Collection Namespace

1.7. Enabling a Software Collection
1.7.1. Running an Application Directly
1.7.2. Running a Shell with Multiple Software Collections Enabled
1.7.3. Running Commands Stored in a File

2. Packaging Software Collections
2.1. Building a Software Collection Locally
2.2. Software Collection Macros

2.2.1. Macros Specific to a Software Collection
2.2.2. Macros Not Specific to a Software Collection

2.3. Converting a Conventional Spec File
2.4. Using a Software Collection in Your Application
2.5. Installing a Software Collection
2.6. Listing Installed Software Collections
2.7. Software Collection Initscript Support
2.8. Software Collection Library Support

2.8.1. Using a Library Outside of the Software Collection
2.8.2. Prefixing the Library Major soname with the Software Collection Name

2.9. Software Collection .pc Files Support
2.10. Software Collection manpath Support
2.11. Software Collection SystemTap Support
2.12. Software Collection cronjob Support
2.13. Software Collection logrotate Support
2.14. Software Collection Lock File Support
2.15. Software Collection Configuration Files Support
2.16. Software Collection Kernel Module Support
2.17. Software Collection SELinux Support

3. Getting More Information
3.1. Red Hat Enterprise Linux Developer Program
3.2. Installed Documentation

4 Table of Contents

3.3. Accessing Red Hat Documentation

A. Revision History

Red Hat Developer Toolset 1.x Software Collections Guide 5

Preface

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not, alternative
but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes the
Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keys and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current working
directory, enter the cat my_next_bestselling_novel command at the shell prompt
and press Enter to execute the command.

The above includes a file name, a shell command and a key, all presented in mono-spaced bold and all
distinguishable thanks to context.

Key combinations can be distinguished from an individual key by the plus sign that connects each part of
a key combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to a virtual terminal.

The first example highlights a particular key to press. The second example highlights a key combination:
a set of three keys pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System → Preferences → Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories →
Character Map from the main menu bar. Next, choose Search → Find… from the

6 Preface

https://fedorahosted.org/liberation-fonts/

Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-click
this highlighted character to place it in the Text to copy field and then click the Copy
button. Now switch back to your document and choose Edit → Paste from the gedit menu
bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and all
distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or variable
text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at a shell
prompt. If the remote machine is example.com and your username on that machine is
john, type ssh john@example.com .

The mount -o remount file-system command remounts the named file system. For
example, to remount the /home file system, the command is mount -o remount /home.

To see the version of a currently installed package, use the rpm -q package command. It
will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions

Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

Red Hat Developer Toolset 1.x Software Collections Guide 7

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to the
current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. Getting Help and Giving Feedback

2.1. Do You Need Help?

If you experience difficulty with a procedure described in this documentation, visit the Red Hat Customer
Portal at http://access.redhat.com. Through the customer portal, you can:

search or browse through a knowledgebase of technical support articles about Red Hat products.

submit a support case to Red Hat Global Support Services (GSS).

access other product documentation.

Red Hat also hosts a large number of electronic mailing lists for discussion of Red Hat software and

8 Preface

http://access.redhat.com

technology. You can find a list of publicly available mailing lists at https://www.redhat.com/mailman/listinfo.
Click on the name of any mailing list to subscribe to that list or to access the list archives.

2.2. We Need Feedback!

If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/
against the product Red Hat Developer Toolset.

When submitting a bug report, be sure to mention the manual's identifier: doc-
Software_Collections_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the surrounding
text so we can find it easily.

3. Acknowledgments
The author of this book would like to thank the following people for their valuable contributions: Jindř ich
Nový, Marcela Mašláňová, Bohuslav Kabrda, Honza Horák, Jan Zelený, Langdon White, Florian Nadge,
Stephen Wadeley, Douglas Silas, and Vít Ondruch, among many others.

Red Hat Developer Toolset 1.x Software Collections Guide 9

https://www.redhat.com/mailman/listinfo
http://bugzilla.redhat.com/

Chapter 1. Introducing Software Collections
This chapter introduces you to the concept of Software Collections or SCLs for short.

1.1. Why Package Software with RPM?
The RPM Package Manager (RPM) is a package management system that runs on Red Hat Enterprise
Linux. RPM makes it easier for you to distribute, manage, and update software that you create for Red
Hat Enterprise Linux. Many software vendors distribute their software via a conventional archive file
(such as a tarball). However, there are several advantages in packaging software into RPM packages.
These advantages are outlined below.

With RPM, you can:
Install, reinstall, remove, upgrade and verify packages.

Users can use standard package management tools (for example Yum or PackageKit) to
install, reinstall, remove, upgrade and verify your RPM packages.

Use a database of installed packages to query and verify packages.

Because RPM maintains a database of installed packages and their files, users can easily
query and verify packages on their system.

Use metadata to describe packages, their installation instructions, and so on.

Each RPM package includes metadata that describes the package's components, version,
release, size, project URL, installation instructions, and so on.

Package pristine software sources into source and binary packages.

RPM allows you to take pristine software sources and package them into source and binary
packages for your users. In source packages, you have the pristine sources along with any
patches that were used, plus complete build instructions. This design eases the maintenance
of the packages as new versions of your software are released.

Add packages to Yum repositories.

You can add your package to a Yum repository that enables clients to easily find and deploy
your software.

Digitally sign your packages.

Using a GPG signing key, you can digitally sign your package so that users are able to verify
the authenticity of the package.

For in-depth information on what is RPM and how to use it, refer to the Red Hat Enterprise Linux 6
Deployment Guide or the Red Hat Enterprise Linux 5 Deployment Guide.

1.2. What Are Software Collections?
With Software Collections, you can build and concurrently install multiple versions of the same software

10 Chapter 1. Introducing Software Collections

https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/index.html
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/5/html/Deployment_Guide/index.html

components on your system. Software Collections have no impact on the system versions of the
packages installed by any of the conventional RPM package management utilities.

Software Collections:
Do not overwrite system files

Software Collections are distributed as a set of several components, which provide their full
functionality without overwriting system files.

Are designed to avoid conflicts with system files

Software Collections make use of a special file system hierarchy to avoid possible conflicts
between a single Software Collection and the base system installation.

Require no changes to the RPM package manager

Software Collections require no changes to the RPM package manager present on the host
system.

Need only minor changes to the spec file

To convert a conventional package to a single Software Collection, you only need to make minor
changes to the package spec file.

Allow you to build a conventional package and a Software Collection package with a
single spec file

With a single spec file, you can build both the conventional package and the Software Collection
package.

Uniquely name all included packages

With Software Collection's namespace, all packages included in the Software Collection are
uniquely named.

Do not conflict with updated packages

Software Collection's namespace ensures that updating packages on your system causes no
conflicts.

Can depend on other Software Collections

Because one Software Collection can depend on another, you can define multiple levels of
dependencies.

1.3. Enabling Support for Software Collections
To enable support for Software Collections on your system so that you can enable and build Software
Collections, you need to have installed the packages scl-utils and scl-utils-build.

If the packages scl-utils and scl-utils-build are not already installed on your system, you can install them

Red Hat Developer Toolset 1.x Software Collections Guide 11

by typing the following at a shell prompt as root:

yum install -y scl-utils scl-utils-build

The scl-utils package provides the scl tool that lets you enable Software Collections on your system. For
more information on enabling Software Collections, refer to Section 1.7, “Enabling a Software Collection”.

The scl-utils-build package provides macros that are essential for building Software Collections. For
more information on building Software Collections, refer to Section 2.1, “Building a Software Collection
Locally”.

1.4. The File System Hierarchy
The root directory of Software Collections is normally located in the /opt/ directory to avoid possible
conflicts between Software Collections and the base system installation. The use of the /opt/ directory
is recommended by the Filesystem Hierarchy Standard (FHS).

You can change the location of the root directory by setting the %_scl_prefix macro in the spec file,
as in the following example:

%_scl_prefix /opt/provider

where provider is the provider (vendor) name registered with the Linux Foundation and the
subordinated Linux Assigned Names and Numbers Authority (LANANA), in conformance with the
Filesystem Hierarchy Standard.

Each organization or project that builds and distributes Software Collections should use its own provider
name, which conforms to the Filesystem Hierarchy Standard (FHS) and avoids possible conflicts
between Software Collections and the base system installation.

You are advised to make the file system hierarchy conform to the following layout:

/opt/provider/application-version/

For more information on the Filesystem Hierarchy Standard, refer to http://www.pathname.com/fhs/.

For more information on the Linux Assigned Names and Numbers Authority, refer to
http://www.lanana.org/.

Below is an example of the file system hierarchy layout with two Software Collections, Software
Collection 1 and Software Collection 2:

opt
`-- provider
 |-- Software Collection 1
 | |-- Software Collection root directory
 | `-- Software Collection scriptlets
 |
 `-- Software Collection 2
 |-- Software Collection root directory
 `-- Software Collection scriptlets

As you can see in the example above, each of the Software Collections directories contains two
subdirectories: the Software Collection root directory and a directory containing the Software Collection
scriptlets. For more information on the Software Collection scriptlets, refer to Section 1.5, “Software
Collection Scriptlets”.

12 Chapter 1. Introducing Software Collections

http://www.pathname.com/fhs/
http://www.lanana.org/

1.5. Software Collection Scriptlets
The Software Collection scriptlets are simple shell scripts that change the current system environment
so that the group of packages in the Software Collection is preferred over the corresponding group of
conventional packages installed on the system.

To utilize the Software Collection scriptlets, use the scl tool. For more information on scl, refer to
Section 1.7, “Enabling a Software Collection”.

1.6. Package Layout
Each Software Collection's layout consists of the meta package, which installs a subset of other
packages, and a number of the Software Collection's packages, which are installed within the Software
Collection namespace.

1.6.1. Meta Package

Each Software Collection includes a meta package, which installs a minimal subset of essential
packages. For example, the essential packages can provide the Perl language interpreter, but no Perl
extension modules. The meta package contains a basic file system hierarchy and delivers a number of
the Software Collection's scriptlets.

The purpose of the meta package is to make sure that all essential packages in the Software Collection
are properly installed and that it is possible to enable the Software Collection.

The meta package produces the following packages that are also part of the Software Collection:

The main package: %scl

The main package in the Software Collection contains dependencies of the base packages,
which are included in the Software Collection. The main package does not contain any files.

For example, if the name of the Software Collection is ruby-1.8.7, then the main package
macro is expanded to:

ruby-1.8.7

The runtime subpackage: name-runtime

The runtime subpackage in the Software Collection owns the Software Collection's file system
and delivers the Software Collection's scriptlets.

For example, if the name of the Software Collection is ruby-1.8.7, then the runtime
subpackage macro is expanded to:

ruby-1.8.7-runtime

The build subpackage: name-build

The build subpackage in the Software Collection delivers the Software Collection's build
configuration. The build subpackage is optional and can be excluded from the Software
Collection.

For example, if the name of the Software Collection is ruby-1.8.7, then the build subpackage

Red Hat Developer Toolset 1.x Software Collections Guide 13

macro is expanded to:

ruby-1.8.7-build

Example of the Meta Package

To get an idea of what a typical Software Collection meta package looks like, see the following example:

%{!?scl:%global scl example}
%scl_package %scl

Summary: Package that installs %scl
Name: %scl_name
Version: 1
Release: 1%{?dist}
BuildArch: noarch
License: GPLv2+
Requires: %{scl_prefix}less
BuildRequires: scl-utils-build

%description
This is the main package for %scl Software Collection.

%package runtime
Summary: Package that handles %scl Software Collection.
Requires: scl-utils

%description runtime
Package shipping essential scripts to work with %scl Software Collection.

%package build
Summary: Package shipping basic build configuration

%description build
Package shipping essential configuration macros to build %scl Software Collection.

%prep
%setup -c -T

%install
rm -rf %{buildroot}
mkdir -p %{buildroot}%{_scl_scripts}/root
cat >> %{buildroot}%{_scl_scripts}/enable << EOF
export PATH=%{_bindir}:\$PATH
EOF
%scl_install

%files

%files runtime
%scl_files

%files build
%{_root_sysconfdir}/rpm/macros.%{scl}-config

%changelog
* Thu Jan 07 2012 John Doe <jdoe@example.com> 1-1
- Initial package

14 Chapter 1. Introducing Software Collections

1.6.2. Packages in the Software Collection Namespace

Besides the minimal subset of packages installed by the meta package, the Software Collection also
installs a number of packages that are part of the package collection itself.

Software Collection package: name-pkgname

The Software Collection can contain a number of packages, which are included in the Software
Collection namespace and relocated to the Software Collection's file system hierarchy.

For example, if the name of the Software Collection is ruby-1.8.7, then the Software
Collection's package name for the ruby-1.8.7.352-2.1.el6.x86_64.rpm package is:

ruby-1.8.7-ruby-1.8.7.352-2.1.el6.x86_64.rpm

1.7. Enabling a Software Collection
The scl tool is used to enable a Software Collection and to run applications in the Software Collection
environment.

General usage of the scl tool can be described using the following syntax:

 scl action software_collection_1 software_collection_2 command

1.7.1. Running an Application Directly

For example, to directly run Perl with the --version option in the Software Collection named
software_collection_1 , execute the following command:

 scl enable software_collection_1 'perl --version'

1.7.2. Running a Shell with Multiple Software Collections Enabled

To run the Bash shell in the environment with multiple Software Collections enabled, execute the
following command:

 scl enable software_collection_1 software_collection_2 bash

The command above enables two Software Collections named software_collection_1 and
software_collection_2 .

1.7.3. Running Commands Stored in a File

To execute a number of commands, which are stored in a file, in the Software Collection environment,
run the following command:

 cat cmd | scl enable software_collection_1 -

The command above executes commands, which are stored in the cmd file, in the environment of the
Software Collection named software_collection_1 .

Red Hat Developer Toolset 1.x Software Collections Guide 15

Chapter 2. Packaging Software Collections
This chapter introduces you to packaging Software Collections.

2.1. Building a Software Collection Locally
To build a Software Collection on your system, run the following command:

 rpmbuild -ba package.spec --define 'scl name'

The difference between the command shown above and the standard command to build conventional
packages (rpmbuild -bb package.spec) is that you have to append the --define option to the
rpmbuild command when building a Software Collection.

The --define option defines the scl macro, which uses the Software Collection configured in the
Software Collection spec file.

2.2. Software Collection Macros
The Software Collection packaging macro scl relocates the file structure, which is part of the Software
Collection, to a file system that is used exclusively by the Software Collection.

The scl macro also defines files ownership for the Software Collection's meta package and provides
additional packaging macros to use in the Software Collection environment.

When using Software Collection macros in the spec file, you must prefix them with %{?scl:macro}, as
in the following example:

%{?scl:Requires:%scl_runtime}

In the example above, the %scl_runtime macro is the value of the Requires tag. Both the macro and
the tag use the %{?scl: prefix.

2.2.1. Macros Specific to a Software Collection

The table below shows a list of all macros specific to a particular Software Collection.

Table 2.1. Software Collection Specific Macros
Macro Description Example value

%scl_name name of the Software Collection software_collection_1

%pkg_name name of the original package perl

%_scl_prefix root of the Software Collection
(not package's root)

/opt/provider/

%_scl_scripts location of Software Collection's
scriptlets

/opt/provider/software_c
ollection_1/

%_scl_root installation root (install-root) of
the package

/opt/provider/software_c
ollection_1/root/

%_scl_require_package depend on a particular package
from the Software Collection

software_collection_1-
package_2

16 Chapter 2. Packaging Software Collections

2.2.2. Macros Not Specific to a Software Collection

The table below shows a list of macros that are not specific to a particular Software Collection. Because
these macros are not relocated and do not point to the Software Collection file system, they allow you to
point to the system root file system. These macros use _root as a prefix.

Table 2.2. Software Collection Non-Specific Macros
Macro Description Relocated Example value

%_root_prefix Software Collection's
%_prefix macro

no /usr/

%_root_exec_prefi
x

Software Collection's
%_exec_prefix
macro

no /usr/

%_root_bindir Software Collection's
%_bindir macro

no /usr/bin/

%_root_sbindir Software Collection's
%_sbindir macro

no /usr/sbin/

%_root_datadir Software Collection's
%_datadir macro

no /usr/share/

%_root_sysconfdir Software Collection's
%_sysconfdir macro

no /etc/

%_root_libexecdir Software Collection's
%_libexecdir macro

no /usr/libexec/

%_root_sharedstat
edir

Software Collection's
%_sharedstatedir
macro

no /usr/com/

%_root_localstate
dir

Software Collection's
%_localstatedir
macro

no /usr/var/

%_root_includedir Software Collection's
%_includedir macro

no /usr/include/

%_root_infodir Software Collection's
%_infodir macro

no /usr/share/info/

%_root_mandir Software Collection's
%_mandir macro

no /usr/share/man/

%_root_initddir Software Collection's
%_initddir macro

no /etc/rc.d/init.d/

%_root_libdir Software Collection's
%_libdir macro, this
macro does not work if
Software Collection's
meta package is
platform-independent

no /usr/lib/

2.3. Converting a Conventional Spec File
The following steps show how to convert a conventional spec file into a Software Collection spec file so
that the Software Collection spec file that you can use in both the conventional package and the
Software Collection.

Red Hat Developer Toolset 1.x Software Collections Guide 17

Procedure 2.1. Converting a Conventional Spec File into a Software Collection Spec File

1. Add the %scl_package macro to the spec file. Place the macro in front of the spec file preamble
as follows:

%{?scl:%scl_package package_name}

2. You are advised to define the %pkg_name macro in the spec file in case the package is not built
for the Software Collection:

%{!?scl:%global pkg_name %{name}}

Consequently, you can use the %pkg_name macro to define the original name of the package
wherever it is needed in the spec file that you can then use for building both the conventional
package and the Software Collection.

3. Change the Name tag in the spec file preamble as follows:

Name: %{?scl_prefix}package_name

4. To check that all essential Software Collection's packages are dependencies of the main meta
package, add the following macro after the BuildRequires or Requires tags in the spec file:

%{?scl:Requires: %scl_runtime}

5. Edit the %setup macro in the %prep section of the spec file so that the macro can deal with a
different package name in the Software Collection environment:

%setup -q -n %{pkg_name}-%{version}

Example of the Converted Spec File

To see what the diff file comparing a conventional spec file with a converted spec file looks like, see the
following example:

18 Chapter 2. Packaging Software Collections

--- a/less.spec
+++ b/less.spec
@@ -1,10 +1,13 @@
+%{?scl:%scl_package less}
+%{!?scl:%global pkg_name %{name}}
+
 Summary: A text file browser similar to more, but better
-Name: less
+Name: %{?scl_prefix}less
 Version: 444
 Release: 7%{?dist}
 License: GPLv3+
 Group: Applications/Text
-Source: http://www.greenwoodsoftware.com/less/%{name}-%{version}.tar.gz
+Source: http://www.greenwoodsoftware.com/less/%{pkg_name}-%{version}.tar.gz
 Source1: lesspipe.sh
 Source2: less.sh
 Source3: less.csh
@@ -19,6 +22,7 @@ URL: http://www.greenwoodsoftware.com/less/
 Requires: groff
 BuildRequires: ncurses-devel
 BuildRequires: autoconf automake libtool
+%{?scl:Requires: %scl_runtime}

 %description
 The less utility is a text file browser that resembles more, but has
@@ -31,7 +35,7 @@ You should install less because it is a basic utility for
viewing text
 files, and you'll use it frequently.

 %prep
-%setup -q
+%setup -q -n %{pkg_name}-%{version}
 %patch1 -p1 -b .Foption
 %patch2 -p1 -b .search
 %patch4 -p1 -b .time
@@ -51,16 +55,16 @@ make CC="gcc $RPM_OPT_FLAGS -D_GNU_SOURCE -
D_LARGEFILE_SOURCE -D_LARGEFILE64_SOU
 %install
 rm -rf $RPM_BUILD_ROOT
 make DESTDIR=$RPM_BUILD_ROOT install
-mkdir -p $RPM_BUILD_ROOT/etc/profile.d
+mkdir -p $RPM_BUILD_ROOT%{_sysconfdir}/profile.d
 install -p -c -m 755 %{SOURCE1} $RPM_BUILD_ROOT/%{_bindir}
-install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT/etc/profile.d
-install -p -c -m 644 %{SOURCE3} $RPM_BUILD_ROOT/etc/profile.d
-ls -la $RPM_BUILD_ROOT/etc/profile.d
+install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{_sysconfdir}/profile.d
+install -p -c -m 644 %{SOURCE3} $RPM_BUILD_ROOT%{_sysconfdir}/profile.d
+ls -la $RPM_BUILD_ROOT%{_sysconfdir}/profile.d

 %files
 %defattr(-,root,root,-)
 %doc LICENSE
-/etc/profile.d/*
+%{_sysconfdir}/profile.d/*
 %{_bindir}/*
 %{_mandir}/man1/*

2.4. Using a Software Collection in Your Application

Red Hat Developer Toolset 1.x Software Collections Guide 19

To use a Software Collection in your application, you need to adjust the BuildRequires and
Requires tags in your application's spec file so that these tags properly define dependencies on
Software Collections.

For example, to define dependencies on two Software Collections named software_collection_1 and
software_collection_2 , add the following three lines to your application's spec file:

BuildRequires: scl-utils-build
Requires: %scl_require software_collection_1
Requires: %scl_require software_collection_2

2.5. Installing a Software Collection
To ensure that a Software Collection is on your system, install the main meta package of the Software
Collection. You can use conventional tools like Yum or PackageKit for this task because Software
Collections are fully compatible with the RPM Package Manager. For example, to install a Software
Collection named software_collection_1 with Yum, run the following command:

 yum install -y software_collection_1

This command will automatically install all the packages that are part of the Software Collection. Also, if
you install an application that depends on a Software Collection, the Software Collection will be installed
along with the rest of the application's dependencies.

For detailed information on Yum and PackageKit usage, refer to the Red Hat Enterprise Linux 6
Deployment Guide.

2.6. Listing Installed Software Collections
To get a list of Software Collections that are currently installed on the system, run the following
command:

 scl --list

2.7. Software Collection Initscript Support
Ensure that users can directly manage any services provided by the Software Collection or one of the
associated applications with the system default tools, like service or chkconfig.

To avoid possible name conflicts with the system versions of the services that are part of the Software
Collection, make sure to adjust the %install section of the spec file as follows:

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{?scl:%_root_sysconfdir}%{!?
scl:%_sysconfdir}/rc.d/%{?scl_prefix}service_name

With this configuration in place, you can then refer to the version of the service included in the Software
Collection as follows:

%{?scl_prefix}service_name

20 Chapter 2. Packaging Software Collections

https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/index.html

2.8. Software Collection Library Support
In case you distribute libraries that you intend to use only in the Software Collection environment or in
addition to the libraries available on the system, adjust the LD_LIBRARY_PATH environment variable in
the spec file as follows:

export LD_LIBRARY_PATH=%{_libdir}:$LD_LIBRARY_PATH

This configuration ensures that the version of the library in the Software Collection is preferred over the
version of the library available on the system if the Software Collection is enabled.

Note

In case you distribute a private shared library in the Software Collection, consider using the
DT_RUNPATH attribute instead of the LD_LIBRARY_PATH environment variable to make the
private shared library accessible in the Software Collection environment.

2.8.1. Using a Library Outside of the Software Collection

If you distribute libraries that you intend to use outside of the Software Collection environment, you can
use the directory /etc/ld.so.conf.d/ for this purpose.

Warning

Do not use /etc/ld.so.conf.d/ for libraries already available on the system. Using
/etc/ld.so.conf.d/ is only recommended for a library that is not available on the system, as
otherwise the version of the library in the Software Collection might get preference over the
system version of the library. That could lead to undesired behavior of the system versions of the
applications, including unexpected termination and data loss.

Procedure 2.2. Using /etc/ld.so.conf.d/ for libraries in the Software Collection

1. Create a file named libs.conf and adjust the spec file configuration accordingly:

SOURCE2: %{?scl_prefix}libs.conf

2. In the libs.conf file, include a list of directories where the versions of the libraries associated
with the Software Collection are located. For example:

/opt/provider/software_collection_1/root/usr/lib64/

In the example above, the /usr/lib64/ directory that is part of the Software Collection
software_collection_1 is included in the list.

3. Edit the %install section of the spec file, so the libs.conf file is installed as follows:

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{?scl:%_root_sysconfdir}%{!?
scl:%_sysconfdir}/ld.so.conf.d/

2.8.2. Prefixing the Library Major soname with the Software Collection Name

When using libraries included in the Software Collection, always remember that a library with the same

Red Hat Developer Toolset 1.x Software Collections Guide 21

major soname can already be available on the system as a part of the base system installation. It is thus
important not to forget to use the scl enable command when building an application against a library
included in the Software Collection. Failing to do so may result in the application being executed in an
incorrect environment, linked against the incorrect system version of the library.

Warning

Keep in mind that executing your application in an incorrect environment (for example in the
system environment instead of the Software Collection environment) as well as linking your
application against an incorrect library can lead to undesired behavior of your application,
including unexpected termination and data loss.

To ensure that your application is not linked against an incorrect library even if the LD_LIBRARY_PATH
environment variable has not been set properly, change the major soname of the library included in the
Software Collection. The recommended way to change the major soname is to prefix the major soname
version number with the Software Collection name.

Below is an example of the MySQL client library with the mysql55- prefix:

$ rpm -ql mysql55-mysql-libs | grep 'lib.*so'
/usr/lib64/mysql/libmysqlclient.so.mysql55-18
/usr/lib64/mysql/libmysqlclient.so.mysql55-18.0.0

On the same system, the system version of the MySQL client library is listed below:

$ rpm -ql mysql-libs | grep 'lib.*so'
/usr/lib64/mysql/libmysqlclient.so.18
/usr/lib64/mysql/libmysqlclient.so.18.0.0

2.9. Software Collection .pc Files Support
The .pc files are special metadata files used by the pkg-config program to store information about
libraries available on the system. In case you distribute .pc files that you intend to use only in the
Software Collection environment or in addition to the .pc files installed on the system, adjust the
PKG_CONFIG_PATH environment variable. Depending on what is defined in your .pc files, adjust the
PKG_CONFIG_PATH environment variable for the %{_libdir} macro (which expands to the library
directory, typically /usr/lib/ or /usr/lib64/), or for the %{_datadir} macro (which expands to
the share directory, typically /usr/share/).

If the library directory is defined in your .pc files, adjust the PKG_CONFIG_PATH environment variable in
the spec file as follows:

export PKG_CONFIG_PATH=%{_libdir}/pkgconfig:\$PKG_CONFIG_PATH

If the share directory is defined in your .pc files, adjust the PKG_CONFIG_PATH environment variable in
the spec file as follows:

export PKG_CONFIG_PATH=%{_datadir}/pkgconfig:\$PKG_CONFIG_PATH

This configuration ensures that the .pc files in the Software Collection are preferred over the .pc files
available on the system if the Software Collection is enabled.

The Software Collection can provide a wrapper script that is visible to the system to enable the Software

22 Chapter 2. Packaging Software Collections

Collection, for example in the /usr/bin/ directory. In this case, ensure that the .pc files are visible to
the system even if the Software Collection is disabled.

To allow your system to use .pc files from the disabled Software Collection, update the
PKG_CONFIG_PATH environment variable with the paths to the .pc files associated with the Software
Collection. Depending on what is defined in your .pc files, adjust the PKG_CONFIG_PATH environment
variable for the %{_libdir} macro (which expands to the library directory), or for the %{_datadir}
macro (which expands to the share directory).

Procedure 2.3. Updating the PKG_CONFIG_PATH environment variable for %{_libdir}

1. To update the PKG_CONFIG_PATH environment variable for the %{_libdir} macro, create a
custom script /etc/profile.d/name.sh. The script is preloaded when a shell is started on the
system.

For example, create the following file:

%{?scl_prefix}pc-libdir.sh

2. Use the pc-libdir.sh short script that modifies the PKG_CONFIG_PATH variable to refer to
your .pc files:

export
PKG_CONFIG_PATH=%{_libdir}/pkgconfig:/opt/provider/software_collection/path/
to/your/pc_files

3. Add the file to your Software Collection package's spec file:

SOURCE2: %{?scl_prefix}pc-libdir.sh

4. Install this file into the system /etc/profile.d/ directory by adjusting the %install section of
the Software Collection package's spec file:

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{?scl:%_root_sysconfdir}%{!?
scl:%_sysconfdir}/profile.d/

Procedure 2.4 . Updating the PKG_CONFIG_PATH environment variable for %{_datadir}

1. To update the PKG_CONFIG_PATH environment variable for the %{_datadir} macro, create a
custom script /etc/profile.d/name.sh. The script is preloaded when a shell is started on the
system.

For example, create the following file:

%{?scl_prefix}pc-datadir.sh

2. Use the pc-datadir.sh short script that modifies the PKG_CONFIG_PATH variable to refer to
your .pc files:

export
PKG_CONFIG_PATH=%{_datadir}/pkgconfig:/opt/provider/software_collection/path
/to/your/pc_files

3. Add the file to your Software Collection package's spec file:

SOURCE2: %{?scl_prefix}pc-datadir.sh

Red Hat Developer Toolset 1.x Software Collections Guide 23

4. Install this file into the system /etc/profile.d/ directory by adjusting the %install section of
the Software Collection package's spec file:

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{?scl:%_root_sysconfdir}%{!?
scl:%_sysconfdir}/profile.d/

2.10. Software Collection manpath Support
To allow the man command on the system to display manual pages from the enabled Software
Collection, update the MANPATH environment variable with the paths to the manual pages that are
associated with the Software Collection.

To update the MANPATH environment variable, add the following line to the spec file:

export MANPATH=${MANPATH}:%{_mandir}

This update relocates the %{_mandir} macro to the Software Collection path. So that the manual
pages associated with the Software Collection are not visible as long as the Software Collection is not
enabled.

The Software Collection can provide a wrapper script that is visible to the system to enable the Software
Collection, for example in the /usr/bin/ directory. In this case, ensure that the manual pages are
visible to the system even if the Software Collection is disabled.

To allow the man command on the system to display manual pages from the disabled Software
Collection, update the MANPATH environment variable with the paths to the manual pages associated
with the Software Collection.

Procedure 2.5. Updating the MANPATH environment variable for the disabled Software
Collection

1. To update the MANPATH environment variable, create a custom script
/etc/profile.d/name.sh. The script is preloaded when a shell is started on the system.

For example, create the following file:

%{?scl_prefix}manpage.sh

2. Use the manpage.sh short script that modifies the MANPATH variable to refer to your man path
directory:

export
MANPATH=${MANPATH}:/opt/provider/software_collection/path/to/your/man_pages

3. Add the file to your Software Collection package's spec file:

SOURCE2: %{?scl_prefix}manpage.sh

4. Install this file into the system /etc/profile.d/ directory by adjusting the %install section of
the Software Collection package's spec file:

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{?scl:%_root_sysconfdir}%{!?
scl:%_sysconfdir}/profile.d/

24 Chapter 2. Packaging Software Collections

2.11. Software Collection SystemTap Support
SystemTap is a useful instrumentation platform for probing running processes and kernel activity on the
Linux system. In case you distribute the SystemTap data directory for cached SystemTap data files that
you intend to use only in the Software Collection environment or in addition to the SystemTap data files
available on the system, adjust the XDG_DATA_DIRS environment variable in the spec file as follows:

export XDG_DATA_DIRS=%{_datadir}:\$XDG_DATA_DIRS

This configuration ensures that the SystemTap data files in the Software Collection are preferred over
the SystemTap data files available on the system if the Software Collection is enabled.

The Software Collection can provide a wrapper script that is visible to the system to enable the Software
Collection, for example in the /usr/bin/ directory. In this case, ensure that the SystemTap data files
are visible to the system even if the Software Collection is disabled.

To allow your system to use SystemTap data files from the disabled Software Collection, update the
XDG_DATA_DIRS environment variable with the paths to the SystemTap data files associated with the
Software Collection.

Procedure 2.6. Updating the XDG_DATA_DIRS environment variable for the disabled
Software Collection

1. To update the XDG_DATA_DIRS environment variable, create a custom script
/etc/profile.d/name.sh. The script is preloaded when a shell is started on the system.

For example, create the following file:

%{?scl_prefix}systemtap.sh

2. Use the systemtap.sh short script that modifies the XDG_DATA_DIRS variable to refer to your
SystemTap data files directory:

export
XDG_DATA_DIRS=${XDG_DATA_DIRS}:/opt/provider/software_collection/path/to/yo
ur/systemtap_data_files

3. Add the file to your Software Collection package's spec file:

SOURCE2: %{?scl_prefix}systemtap.sh

4. Install this file into the system /etc/profile.d/ directory by adjusting the %install section of
the Software Collection package's spec file:

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{?scl:%_root_sysconfdir}%{!?
scl:%_sysconfdir}/profile.d/

2.12. Software Collection cronjob Support
With your Software Collection, you can run regular tasks on the system either with a dedicated service or
with cronjobs. If you intend to use a dedicated service, refer to Section 2.7, “Software Collection Initscript
Support” on how to work with initscripts in the Software Collection environment.

Procedure 2.7. Running regular tasks with cronjobs

Red Hat Developer Toolset 1.x Software Collections Guide 25

1. To use cronjobs for running regular tasks, place a crontab file for your Software Collection in
the /etc/cron.d/ directory with the Software Collection's name.

For example, create the following file:

%{?scl_prefix}crontab

2. Ensure that the contents of the crontab file follow the standard crontab file format, as in the
following example:

0 1 * * Sun root
/opt/provider/software_collection/architecture/usr/bin/cron_job_name

3. Add the file to your spec file of the Software Collection package:

SOURCE2: %{?scl_prefix}crontab

4. Install the file into the system directory /etc/cron.d/ by adjusting the %install section of the
Software Collection package's spec file:

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{?scl:%_root_sysconfdir}%{!?
scl:%_sysconfdir}/cron.d/

2.13. Software Collection logrotate Support
With your Software Collection or an application associated with your Software Collection, you can
manage log files with the logrotate program.

Procedure 2.8. Managing log files with logrotate

1. To manage your log files with logrotate , place a custom logrotate file for your Software
Collection in the system directory for the logrotate jobs /etc/logrotate.d/.

For example, create the following file:

%{?scl_prefix}logrotate

2. Ensure that the contents of the logrotate file follow the standard logrotate file format as
follows:

/opt/provider/software_collection/var/log/your_application_name.log {
 missingok
 notifempty
 size 30k
 yearly
 create 0600 root root
 }

3. Add the file to your spec file of the Software Collection package:

SOURCE2: %{?scl_prefix}logrotate

4. Install the file into the system directory /etc/logrotate.d/ by adjusting the %install section
of the Software Collection package's spec file:

26 Chapter 2. Packaging Software Collections

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{?scl:%_root_sysconfdir}%{!?
scl:%_sysconfdir}/logrotate.d/

2.14. Software Collection Lock File Support
If you store your Software Collection's lock files within the /opt/provider/software_collection/ file
system hierarchy, you can avoid any possible conflicts with the system versions of the applications or
services that can be on the system.

If you want to prevent Software Collection's applications or services from running while the system
version of the respective application or service is running, make sure that your applications or services,
which require a lock, write the lock to the system directory /var/lock/ instead of the Software
Collection's directory /opt/provider/software_collection/var/lock/. In this way, your
applications or services' lock file will not be overwritten. The lock file will not be renamed and the name
stays the same as the system version.

If you want your Software Collection's version of the application or service to run concurrently with the
system version (when the Software Collection version's resources will not conflict with the system
version's resources), ensure that the applications or services write the lock to the Software Collection's
directory /opt/provider/software_collection/var/lock/.

2.15. Software Collection Configuration Files Support
If you store your Software Collection's configuration files within the
/opt/provider/software_collection/ file system hierarchy, you can avoid any possible conflicts
with the system versions of the configuration files that can be present on the system.

If you cannot store the configuration files within /opt/provider/software_collection/, then ensure
that you properly configure an alternative location for the configuration files. For many programs, this can
be usually done at build or installation time.

2.16. Software Collection Kernel Module Support
Because Linux kernel modules are normally tied to a particular version of the Linux kernel, you must be
careful when you package kernel modules into a Software Collection. This is because the package
management system on Red Hat Enterprise Linux does not automatically update or install an updated
version of the kernel module if an updated version of the Linux kernel is installed. To make packaging
the kernel modules into the Software Collection easier, see the following recommendations. Ensure that:

1. the name of your kernel module package includes the kernel version,

2. the tag Requires, which can be found in your kernel module spec file, includes the kernel version
and revision (in the format kernel-version-revision).

2.17. Software Collection SELinux Support
Because Software Collections are designed to install the Software Collection packages in an alternate
directory, set up the necessary SELinux labels so that SELinux is aware of the alternate directory.

If the file system hierarchy of your Software Collection package imitates the file system hierarchy of the
corresponding conventional package, you can run the semanage fcontext and restorecon
commands to set up the SELinux labels.

Red Hat Developer Toolset 1.x Software Collections Guide 27

For example, if the /opt/provider/software_collection_1/x86_64/root/usr/ directory in
your Software Collection package imitates the /usr/ directory of your conventional package, set up the
SELinux labels as follows:

 semanage fcontext -a -e /usr
/opt/provider/software_collection_1/x86_64/root/usr

 restorecon -R -v /opt/provider/software_collection_1/x86_64/root/usr

The commands above ensure that all directories and files in the
/opt/provider/software_collection_1/x86_64/root/usr/ directory are labeled by SELinux
as if they were located in the /usr/ directory.

To use the semanage fcontext and restorecon commands in your Software Collection, add the
commands to the %post post-installation scriptlet in the Software Collection spec file.

Important

Keep in mind that the semanage -e command, which substitutes the source path for the
destination path during labeling, is not supported in Red Hat Enterprise Linux 5.

28 Chapter 2. Packaging Software Collections

Chapter 3. Getting More Information
For more information on Software Collection packaging, Red Hat Enterprise Linux Developer Program,
Red Hat Developer Toolset, and Red Hat Enterprise Linux, refer to the resources listed below.

3.1. Red Hat Enterprise Linux Developer Program
Red Hat Enterprise Linux Developer Program – The Red Hat Enterprise Linux Developer Program
delivers industry-leading developer tools, instructional resources, and an ecosystem of experts to
help Linux programmers maximize productivity in building Linux applications.

Red Hat Enterprise Linux Developer Program Group (requires Red Hat Login) – The Red Hat
Enterprise Linux Developer Program Group contains developer-related information for the
development tools available for Red Hat Enterprise Linux. In addition, users can find there developer-
related papers and videos on topics that are of interest to developers, for example RPM building,
threaded programming, performance tuning, debugging, and so on.

3.2. Installed Documentation
scl(1) – The manual page for the scl tool for enabling Software Collections and running programs in
Software Collection's environment.

scl --help – General usage information for the scl tool for enabling Software Collections and running
programs in Software Collection's environment.

rpmbuild(8) – The manual page for the rpmbuild utility for building both binary and source
packages.

3.3. Accessing Red Hat Documentation
The Red Hat Documentation portal located at https://access.redhat.com/knowledge/docs/ serves as a
central source of all product documentation. It is translated in 22 languages and for each product, it
provides different kinds of books from release and technical notes to installation, user, and reference
guides in HTML, PDF, and EPUB formats.

The following is a brief list of documents that are directly or indirectly relevant to this book:

Red Hat Developer Toolset 1.1 User Guide – The User Guide for Red Hat Developer Toolset 1.1
contains information about Red Hat Developer Toolset, a Red Hat offering for developers on the Red
Hat Enterprise Linux platform. Using Software Collections, Red Hat Developer Toolset provides
current versions of the GCC compiler, GDB debugger and other binary utilities.

Red Hat Enterprise Linux 6 Developer Guide – The Developer Guide for Red Hat Enterprise Linux 6
provides detailed information on the Eclipse IDE, libraries and runtime support, compiling and
building, debugging, and profiling.

Red Hat Enterprise Linux 6 Installation Guide – The Installation Guide for Red Hat Enterprise Linux 6
provides more details on getting, installing, and updating the system.

Red Hat Enterprise Linux 5 Installation Guide – The Installation Guide for Red Hat Enterprise Linux 5
provides more details on getting, installing, and updating the system.

Red Hat Enterprise Linux 6 Deployment Guide – The Deployment Guide for Red Hat Enterprise Linux
6 documents relevant information regarding the deployment, configuration, and administration of Red
Hat Enterprise Linux 6.

Red Hat Enterprise Linux 5 Deployment Guide – The Deployment Guide for Red Hat Enterprise Linux
5 documents relevant information regarding the deployment, configuration, and administration of Red
Hat Enterprise Linux 5.

Red Hat Developer Toolset 1.x Software Collections Guide 29

https://access.redhat.com/products/Red_Hat_Enterprise_Linux/Developer/
https://access.redhat.com/groups/red-hat-enterprise-linux-developer-program
https://access.redhat.com/knowledge/docs/
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Developer_Toolset/1/html/User_Guide/index.html
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Developer_Guide/index.html
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Installation_Guide/index.html
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/5/html/Installation_Guide/index.html
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/index.html
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/5/html/Deployment_Guide/index.html

30 Chapter 3. Getting More Information

Revision History
Revision 1.0-1 Tue Jan 22 2013 Petr Kovář

Red Hat Developer Toolset 1.1 release of the Software Collections Guide.

Revision 1.0-2 Thu Nov 08 2012 Petr Kovář
Red Hat Developer Toolset 1.1 Beta-2 release of the Software Collections Guide.

Revision 1.0-1 Wed Oct 10 2012 Petr Kovář
Red Hat Developer Toolset 1.1 Beta-1 release of the Software Collections Guide.

Revision 1.0-0 Tue Jun 26 2012 Petr Kovář
Red Hat Developer Toolset 1.0 release of the Software Collections Guide.

Revision 0.0-2 Tue Apr 10 2012 Petr Kovář
Red Hat Developer Toolset 1.0 Alpha-2 release of the Software Collections Guide.

Revision 0.0-1 Tue Mar 06 2012 Petr Kovář
Red Hat Developer Toolset 1.0 Alpha-1 release of the Software Collections Guide.

Revision 0.0-0 Thu Feb 23 2012 Petr Kovář
Initial creation of book.

Red Hat Developer Toolset 1.x Software Collections Guide 31

	Software Collections Guide
	A guide to Software Collections for Red Hat Enterprise Linux
	Petr Kovář

	Legal Notice
	Abstract
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	Note
	Important
	Warning
	2. Getting Help and Giving Feedback
	2.1. Do You Need Help?
	2.2. We Need Feedback!

	3. Acknowledgments

	Chapter 1. Introducing Software Collections
	1.1. Why Package Software with RPM?
	With RPM, you can:

	1.2. What Are Software Collections?
	Software Collections:

	1.3. Enabling Support for Software Collections
	1.4. The File System Hierarchy
	1.5. Software Collection Scriptlets
	1.6. Package Layout
	1.6.1. Meta Package
	Example of the Meta Package

	1.6.2. Packages in the Software Collection Namespace

	1.7. Enabling a Software Collection
	1.7.1. Running an Application Directly
	1.7.2. Running a Shell with Multiple Software Collections Enabled
	1.7.3. Running Commands Stored in a File

	Chapter 2. Packaging Software Collections
	2.1. Building a Software Collection Locally
	2.2. Software Collection Macros
	2.2.1. Macros Specific to a Software Collection
	Table 2.1. Software Collection Specific Macros

	2.2.2. Macros Not Specific to a Software Collection
	Table 2.2. Software Collection Non-Specific Macros

	2.3. Converting a Conventional Spec File
	Procedure 2.1. Converting a Conventional Spec File into a Software Collection Spec File
	Example of the Converted Spec File

	2.4. Using a Software Collection in Your Application
	2.5. Installing a Software Collection
	2.6. Listing Installed Software Collections
	2.7. Software Collection Initscript Support
	2.8. Software Collection Library Support
	Note
	2.8.1. Using a Library Outside of the Software Collection

	Warning
	Procedure 2.2. Using /etc/ld.so.conf.d/ for libraries in the Software Collection
	2.8.2. Prefixing the Library Major soname with the Software Collection Name

	Warning
	2.9. Software Collection .pc Files Support
	Procedure 2.3. Updating the PKG_CONFIG_PATH environment variable for %{_libdir}
	Procedure 2.4. Updating the PKG_CONFIG_PATH environment variable for %{_datadir}

	2.10. Software Collection manpath Support
	Procedure 2.5. Updating the MANPATH environment variable for the disabled Software Collection

	2.11. Software Collection SystemTap Support
	Procedure 2.6. Updating the XDG_DATA_DIRS environment variable for the disabled Software Collection

	2.12. Software Collection cronjob Support
	Procedure 2.7. Running regular tasks with cronjobs

	2.13. Software Collection logrotate Support
	Procedure 2.8. Managing log files with logrotate

	2.14. Software Collection Lock File Support
	2.15. Software Collection Configuration Files Support
	2.16. Software Collection Kernel Module Support
	2.17. Software Collection SELinux Support
	Important

	Chapter 3. Getting More Information
	3.1. Red Hat Enterprise Linux Developer Program
	3.2. Installed Documentation
	3.3. Accessing Red Hat Documentation

	Revision History

