
Lana Brindley Alison Young Cheryn Tan

Red Hat Enterprise MRG 2
Realtime Reference Guide

Reference guide for the Realtime component of Red Hat Enterprise MRG







Red Hat Enterprise MRG 2 Realtime Reference Guide

Reference guide for the Realtime component of Red Hat Enterprise MRG

Lana Brindley
Red Hat  Engineering Cont ent  Services

Alison Young
Red Hat  Engineering Cont ent  Services

Cheryn Tan
Red Hat  Engineering Cont ent  Services
cherynt an@redhat .com



Legal Notice
Copyright 2013 Red Hat, Inc. The text of  and illustrations in this document are licensed by Red Hat under
a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of  CC-
BY-SA is available at . In accordance with CC-BY-SA, if  you distribute this document or an adaptation of
it, you must provide the URL for the original version. Red Hat, as the licensor of  this document, waives the
right to enforce, and agrees not to assert, Section 4d of  CC-BY-SA to the fullest extent permitted by
applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the
Infinity Logo, and RHCE are trademarks of  Red Hat, Inc., registered in the United States and other
countries. Linux is the registered trademark of  Linus Torvalds in the United States and other countries.
Java is a registered trademark of  Oracle and/or its aff iliates. XFS is a trademark of  Silicon Graphics
International Corp. or its subsidiaries in the United States and/or other countries. MySQL is a registered
trademark of  MySQL AB in the United States, the European Union and other countries. All other
trademarks are the property of  their respective owners. 1801 Varsity Drive Raleigh, NC 27606-2072 USA
Phone: +1 919 754 3700 Phone: 888 733 4281 Fax: +1 919 754 3701

Keywords

Abstract
This book contains reference material for the MRG Realtime component of  the Red Hat Enterprise MRG
distributed computing platform. For installation instructions, see the MRG Realtime Installation Guide. For
information on tuning, see the MRG Realtime Tuning Guide.



5
5
5
7
7
8
8
8

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10
10
10

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11
11
13

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15
16
16
17
17
18

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23
24
24

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26
26
26
26
26

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27
27

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33
33
34
34

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table of Contents

Preface
1. Document Conventions

1.1. Typographic Conventions
1.2. Pull-quote Conventions
1.3. Notes and Warnings

2. Getting Help and Giving Feedback
2.1. Do You Need Help?
2.2. We Need Feedback!

Part I. Hardware

Chapter 1. Processor cores
1.1. Caches
1.2. Interconnects

Chapter 2. Memory allocation
2.1. Demand paging
2.2. Using mlock to avoid memory faults

Chapter 3. Hardware interrupts
3.1. Level-signalled interrupts
3.2. Message-signalled interrupts
3.3. Non-maskable interrupts
3.4. System management interrupts
3.5. Advanced programmable interrupt controller

Part II. Application architecture

Chapter 4 . Threads and processes

Chapter 5. Priorit ies and policies

Chapter 6. Affinity
6.1. Using the taskset command to set processor affinity
6.2. Using the sched_getaffinity() system call to set processor affinity

Chapter 7. Thread synchronization
7.1. Mutexes
7.2. Barriers
7.3. Condvars
7.4. Other types of synchronization

Chapter 8. Sockets
8.1. Socket options

Chapter 9. Shared memory

Chapter 10. Shared libraries

Part III. Library services

Chapter 11. Sett ing the scheduler
11.1. Using chrt to set the scheduler
11.2. Preemption
11.3. Using library calls to set priority

Red Hat Enterprise MRG 2 Realtime Reference Guide

6



35
36
36
37
38

4 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 2
42
42

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 3
43
44
46
47
47
48
49

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

51
51
51

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.3.1. sched_getscheduler
11.3.2. sched_setscheduler
11.3.3. sched_getparam and sched_setparam
11.3.4. sched_get_priority_min and sched_get_priority_max
11.3.5. sched_rr_get_interval

Chapter 12. Creating threads and processes

Chapter 13. Mmap

Chapter 14 . System calls
14.1. sched_yield
14.2. getrusage()

Chapter 15. Timestamping
15.1. Hardware clocks

15.1.1. Reading hardware clock sources
15.2. POSIX clocks

15.2.1. CLOCK_MONOTONIC_COARSE and CLOCK_REALTIME_COARSE
15.2.2. Using clock_getres() to compare clock resolution
15.2.3. Using C code to compare clock resolution
15.2.4. Using the time command to compare cost of reading clocks

Chapter 16. More information
16.1. Reporting bugs
16.2. Further reading

Revision history

Preface 

7



Red Hat Enterprise MRG 2 Realtime Reference Guide

8



Preface
Red Hat Enterprise MRG

This book contains basic installation and tuning information for the MRG Realtime component of Red Hat
Enterprise MRG. Red Hat Enterprise MRG is a high performance distributed computing platform
consisting of three components:

1. Messaging — Cross platform, high performance, reliable messaging using the Advanced
Message Queuing Protocol (AMQP) standard.

2. Realtime — Consistent low-latency and predictable response times for applications that require
microsecond latency.

3. Grid — Distributed High Throughput (HTC) and High Performance Computing (HPC).

All three components of Red Hat Enterprise MRG are designed to be used as part of the platform, but
can also be used separately.

MRG Realt ime

Many industries and organizations need extremely high performance computing and may require low
and predictable latency, especially in the financial and telecommunications industries. Latency, or
response time, is defined as the time between an event and system response and is generally
measured in microseconds (μs). For most applications running under a Linux environment, basic
performance tuning can improve latency sufficiently. For those industries where latency not only needs
to be low, but also accountable and predictable, Red Hat have now developed a 'drop-in' kernel
replacement that provides this. MRG Realtime is distributed as part of Red Hat Enterprise MRG and
provides seamless integration with Red Hat Enterprise Linux 6. MRG Realtime offers clients the
opportunity to measure, configure and record latency times within their organization.

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not, alternative
but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes the
Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keys and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current working
directory, enter the cat my_next_bestselling_novel command at the shell prompt
and press Enter to execute the command.

The above includes a file name, a shell command and a key, all presented in mono-spaced bold and all
distinguishable thanks to context.

Part I. Hardware 
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Key combinations can be distinguished from an individual key by the plus sign that connects each part of
a key combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to a virtual terminal.

The first example highlights a particular key to press. The second example highlights a key combination:
a set of three keys pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem  for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System → Preferences → Mouse  from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit  file, choose Applications → Accessories →
Character Map from the main menu bar. Next, choose Search → Find… from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-click
this highlighted character to place it in the Text to copy field and then click the Copy
button. Now switch back to your document and choose Edit  → Paste  from the gedit  menu
bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and all
distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or variable
text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at a shell
prompt. If the remote machine is example.com  and your username on that machine is
john, type ssh john@example.com .

The mount -o remount file-system command remounts the named file system. For
example, to remount the /home file system, the command is mount -o remount /home.

To see the version of a currently installed package, use the rpm -q package command. It
will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text

Red Hat Enterprise MRG 2 Realtime Reference Guide
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displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books        Desktop   documentation  drafts  mss    photos   stuff  svn
books_tests  Desktop1  downloads      images  notes  scripts  svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
   public static void main(String args[]) 
       throws Exception
   {
      InitialContext iniCtx = new InitialContext();
      Object         ref    = iniCtx.lookup("EchoBean");
      EchoHome       home   = (EchoHome) ref;
      Echo           echo   = home.create();

      System.out.println("Created Echo");

      System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
   }
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to the
current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Chapter 2. Memory allocation 
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Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. Getting Help and Giving Feedback

2.1. Do You Need Help?
If you experience difficulty with a procedure described in this documentation, visit the Red Hat Customer
Portal at http://access.redhat.com. Through the customer portal, you can:

search or browse through a knowledgebase of technical support articles about Red Hat products.

submit a support case to Red Hat Global Support Services (GSS).

access other product documentation.

Red Hat also hosts a large number of electronic mailing lists for discussion of Red Hat software and
technology. You can find a list of publicly available mailing lists at https://www.redhat.com/mailman/listinfo.
Click on the name of any mailing list to subscribe to that list or to access the list archives.

2.2. We Need Feedback!
If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/
against the product Red Hat Enterprise MRG.

When submitting a bug report, be sure to mention the manual's identifier: Realtime_Reference_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the surrounding
text so we can find it easily.

Red Hat Enterprise MRG 2 Realtime Reference Guide
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Part I. Hardware
Selecting and configuring the right hardware is a critical part of setting up a realtime environment.
Hardware impacts the way that the system operates. System Management Interrupts, CPU cache design,
and NUMA utilization can all be handled in different ways. Hardware can vary from vendor to vendor, and
not all hardware is suited to realtime environments. Check the list of certified hardware for MRG
Realtime.

It is important when setting up a MRG Realtime environment that the application is designed in such a
way that it interacts well with the available hardware. This section contains information on the ways that
MRG Realtime uses hardware, and the areas to look out for.

Chapter 2. Memory allocation 
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Chapter 1. Processor cores
A processor core is a physical Central Processing Unit (CPU) in a computer. Cores are responsible for
executing machine code. A socket is the connection between the processor and the motherboard of the
computer. The socket is the location on the motherboard that the processor is placed into. A single core
processor physically occupies one socket, and has one core available. A quad-core processor
physically occupies one socket and has four cores available.

When designing realtime applications, take the number of available cores into account. It is also
important to note how caches are shared among cores, and how the cores are physically connected.

If multiple cores are available to the application, use threads or processes to take advantage of them. If a
program is written without using these constructs, it will only run on one processor at a time. A multi-core
platform allows advantages to be gained through using different cores for different types of operations.

1.1. Caches
Often, the various threads of an application will need to synchronize access to a shared resource, such
as a data structure. Performance can be improved in this case by knowing the cache layout of the
system. The Tuna tool can be used to help determine the cache layout. Try binding interacting threads
to cores, so that they share the cache. Cache sharing reduces memory faults by ensuring that the
mutual exclusion primitive (mutex, condvar, or similar) and the data structure itself use the same cache.

1.2. Interconnects
It is important to examine the interconnects that occur between cores. As the number of cores in a
machine rise, the more difficult and expensive it becomes to provide uniform access to the memory for all
of them. Many hardware vendors now provide a transparent network of interconnects between cores
and memory, known as a NUMA (non-uniform memory access) architecture. On NUMA systems, knowing
the interconnect topology allows threads that communicate frequently to be placed on adjacent cores.

Red Hat Enterprise MRG 2 Realtime Reference Guide
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Chapter 2. Memory allocation
Linux-based operating systems use a virtual memory system. Any address referenced by a user-space
application must be translated into a physical address. This is achieved through a combination of page
tables and address translation hardware in the underlying computer system.

One consequence of having the translation mechanism in between a program and the actual memory is
that the operating system can steal pages when required. This is achieved by marking a previously
used page table entry as invalid, so that even under normal memory pressure, the operating system
might scavenge pages from one application to give to another. This can have adverse affects on
systems that require deterministic behavior. Instructions that normally execute in a fixed amount of time
can take longer than normal because a page fault has been triggered.

2.1. Demand paging
Under Linux, all memory addresses generated by a program get passed through an address translation
mechanism in the processor. The addresses are converted from a process-specific virtual address to a
physical memory address. This is referred to as virtual memory.

Figure 2.1. MRG Realt ime virtual memory system

The two main components in the translation mechanism are page tables and translation lookaside
buffers (TLBs). Page tables are multi-level tables in physical memory that contain mappings for virtual to
physical memory. These mappings are readable by the virtual memory translation hardware in the
processor. TLBs are caches for page table translations.

When a page table entry has been assigned a physical address, it is referred to as the resident working
set. When the operating system needs to free memory for other processes, it can remove pages from
the working set. When this happens, any reference to a virtual address within that page will create a
page fault, and the page will be reallocated. If the system is extremely low on physical memory, then this

Chapter 3. Hardware interrupts 
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process will start to thrash, constantly stealing pages from processes, and never allowing a process to
complete. The virtual memory statistics can be monitored by looking for the pgfault value in the 
/proc/vmstat file.

TLBs are hardware caches of virtual memory translations. Any processor core with a TLB will check the
TLB in parallel with initiating a memory read of a page table entry. If the TLB entry for a virtual address is
valid, the memory read is aborted and the value in the TLB is used for the address translation.

TLBs operate on the principle of locality of reference. This means that if code stays in one region of
memory for a significant period of time (such as loops or call-related functions) then the TLB references
avoid the main memory for address translations. This can significantly speed up processing times.
When writing deterministic and fast code, use functions that maintain locality of reference. This can
mean using loops rather than recursion. If recursion cannot be avoided, place the recursion call at the
end of the function. This is called tail-recursion, which makes the code work in a relatively small region of
memory and avoid fetching table translations from main memory.

A potential source of memory latency is called a minor page fault. They are created when a process
attempts to access a portion of memory before it has been initialized. In this case, the system will need
to perform some operations to fill the memory maps or other management structures. The severity of a
minor page fault can depend on system load and other factors, but they are usually short and have a
negligible impact.

A more severe memory latency is a major page fault. These can occur when the system has to
synchronize memory buffers with the disk, swap memory pages belonging to other processes, or
undertake any other Input/Output activity to free memory. This occurs when the processor references a
virtual memory address that has not had a physical page allocated to it. The reference to an empty page
causes the processor to execute a fault, and instructs the kernel code to allocate a page and return, all
of which increases latency dramatically.

When writing a multi-threaded application, it is important to consider the machine topology when
designing the data decomposition. Topology is the memory hierarchy, and includes CPU caches and the
NUMA node. Sharing data information very tightly on CPUs in different cache and NUMA domains can
lead to traffic problems and bottlenecks.

Contention can create drastic performance problems. On some hardware, the traffic on the various
memory buses are not subject to any fairness rules. Always check the hardware you are using in order
to avoid this.

Memory allocation errors can not always be eliminated through the use of CPU affinity, scheduling
policies, and priorities. When an application shows a performance drop, it can be beneficial to check if it
is being affected by page faults. There are a number of ways of doing this, but a simple method is to
look at the process information in the /proc directory. For a particular process PID, use the cat
command to view the /proc/PID/stat file. The relevant entries in this file are:

Field 2 - filename of the executable

Field 10 - number of minor page faults

Field 12 - number of major page faults

When a process encounters a page fault all its threads will be frozen until the kernel handles the fault.
There are several ways to address this problem, although the best solution is to adjust the source code
to avoid page faults.

Red Hat Enterprise MRG 2 Realtime Reference Guide
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Example 2.1. Using the /proc file to check for page faults

This example uses the /proc file to check for page faults in a running process.

Use the cat command and a pipe function to return only the second, tenth, and twelfth lines of the 
/proc/PID/stat file:

# cat /proc/3366/stat | cut -d\  -f2,10,12
(bash) 5389 0

In the above output, PID 3366 is bash, and it has reported 5389 minor page faults, and no major page
faults.

Note

For more information, or for further reading, the following book is related to the information given
in this section:

Linux System Programming by Robert Love

2.2. Using mlock to avoid memory faults
The mlock and mlockall system calls tell the system to lock to a specified memory range, and to not
allow that memory to be paged. This means that once the physical page has been allocated to the page
table entry, references to that page will not fault again.

There are two groups of mlock system calls available. The mlock and munlock calls lock and unlock a
specific range of addresses. The mlockall and munlockall calls lock or unlock the entire program
space.

Use of the mlock calls should be examined carefully and used with caution. If the application is large, or
if it has a large data domain, the mlock calls can cause thrashing if the system cannot allocate memory
for other tasks. If the application is entering a time sensitive region of code, an mlockall call prior to
entering, followed by munlockall can reduce paging while in the critical section. Similarly, mlock can
be used on a data region that is relatively static or that will grow slowly but needs to be accessed
without page faulting.

Use of mlock will not guarantee that the program will experience no page faults. It is used to ensure
that the data will stay in memory, but can not ensure that it will stay in the same page. Other functions
such as move_pages and memory compactors can move data around despite the mlock.

Important

Always use mlock with care. Using it excessively can lead to an out of memory (OOM) error.
Do not just put an mlockall call at the start of your application. It is recommended that only the
data and text of the realtime portion of the application be locked.

Chapter 3. Hardware interrupts 
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Example 2.2. Using mlock in an application

This example uses the mlock call in a simple application.

#include <stdio.h>
#include <sys/types.h>
#include <sys/mman.h>

char *
alloc_workbuf(int size)
{
 char *ptr;

 /* allocate some memory */
 ptr = malloc(size);

 /* return NULL on failure */
 if (ptr == NULL)
  return NULL;

 /* lock this buffer into RAM */
 if (mlock(ptr, size)) {
  free(ptr);
  return NULL;
 }
 return ptr;
}

void 
free_workbuf(char *ptr, int size)
{
 /* unlock the address range */
 munlock(ptr, size);

 /* free the memory */
 free(ptr);
}

Note

For more information, or for further reading, the following man pages are related to the information
given in this section:

mlock(2)
mlock(3)
mlockall(2)
move_pages(2)

Red Hat Enterprise MRG 2 Realtime Reference Guide
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Chapter 3. Hardware interrupts
Hardware interrupts are used by devices to communicate that they require attention from the operating
system. Some common examples are a hard disk signaling that is has read a series of data blocks, or
that a network device has processed a buffer containing network packets. Interrupts are also used for
asynchronous events, such as the arrival of new data from an external network. Hardware interrupts are
delivered directly to the CPU using a small network of interrupt management and routing devices. This
chapter describes the different types of interrupt and how they are processed by the hardware and by
the operating system. It also describes how the MRG Realtime kernel differs from the standard kernel in
handling the types of interrupt.

A standard system receives many millions of interrupts over the course of its operation, including a
semi-regular "timer" interrupt that periodically performs maintenance and system scheduling decisions. It
may also receive special kinds of interrupts, such as NMI (Non-Maskable Interrupts) and SMI (System
Management Interrupts).

Hardware interrupts are referenced by an interrupt number. These numbers are mapped back to the
piece of hardware that created the interrupt. This enables the system to monitor which device created
the interrupt and when it occurred.

In most computer systems, interrupts are handled as quickly as possible. When an interrupt is received,
any current activity is stopped and an interrupt handler is executed. The handler will preempt any other
running programs and system activities, which can slow the entire system down, and create latencies.
MRG Realtime modifies the way interrupts are handled in order to improve performance, and decrease
latency.
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Example 3.1. Viewing interrupts on your system

To examine the type and quantity of hardware interrupts received by a Linux system, use the cat
command to view /proc/interrupts:

$ cat /proc/interrupts
  CPU0       CPU1       
0:   13072311          0   IO-APIC-edge      timer
1:      18351          0   IO-APIC-edge      i8042
8:        190          0   IO-APIC-edge      rtc0
9:     118508       5415   IO-APIC-fasteoi   acpi
12:    747529      86120   IO-APIC-edge      i8042
14:   1163648          0   IO-APIC-edge      ata_piix
15:         0          0   IO-APIC-edge      ata_piix
16:  12681226     126932   IO-APIC-fasteoi   ahci, uhci_hcd:usb2, radeon, yenta, 
eth0
17:   3717841          0   IO-APIC-fasteoi   uhci_hcd:usb3, HDA, iwl3945
18:         0          0   IO-APIC-fasteoi   uhci_hcd:usb4
19:       577         68   IO-APIC-fasteoi   ehci_hcd:usb1, uhci_hcd:usb5
NMI:        0          0   Non-maskable interrupts
LOC:  3755270    9388684   Local timer interrupts
RES:  1184857    2497600   Rescheduling interrupts
CAL:    12471       2914   function call interrupts
TLB:    14555      15567   TLB shootdowns
TRM:        0          0   Thermal event interrupts
SPU:        0          0   Spurious interrupts
ERR:        0
MIS:        0

The output shows the various types of hardware interrupt, how many have been received, which CPU
was the target for the interrupt, and the device that generated the interrupt.

3.1. Level-signalled interrupts
Level-signalled interrupts, use a dedicated interrupt line to deliver voltage transitions.

The dedicated line can send one of two voltages to represent a binary 1 or binary 0. Once a signal has
been sent by the line, it will remain in that state until the CPU specifically resets it. This is achieved by
the CPU asking the generating device to stop asserting the line. This allows a number of devices to
share a single interrupt line. If the CPU has instructed a device to stop asserting the line, and it remains
asserted, there is another interrupt pending.

Although level-signalled interrupts require a high level of hardware logic in both the devices and the
CPU, they also provide a number of benefits. Not only can they be used by more than one device, but
they are almost completely unable to miss an interrupt.

3.2. Message-signalled interrupts
Many modern systems use message-signalled interrupts, which send the signal as a dedicated
message on a packet or message-based electrical bus.

One common example of this type of bus is PCI Express (Peripheral Component Interconnect Express,
or PCIe). These devices transmit a message as a type that the PCIe Host Controller interprets as an
interrupt message. The host controller then sends the message on to the CPU.
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Depending on the hardware, a PCIe system might send the signal using a dedicated interrupt line
between the PCIe host controller and the CPU, or by sending the message over (for example) the CPU
HyperTransport bus. Many PCIe systems can also operate in legacy mode, where legacy interrupt lines
are implemented in order to support older operating systems, or Linux kernels booted with the option 
pci=nomsi on the kernel command line.

3.3. Non-maskable interrupts
An interrupt is said to be masked when it has been disabled, or when the CPU has been instructed to
ignore it. A non-maskable interrupt (NMI) cannot be ignored, and is generally used only for critical
hardware errors.

NMIs are normally delivered over a separate interrupt line. When an NMI is received by the CPU, it
indicates that a critical error has occurred, and that the system is probably about to crash. The NMI is
generally the best indication of what might have caused the problem.

Because NMIs are not able to be ignored, they are also used by some systems as a hardware monitor.
The device sends a stream of NMIs, which are checked by an NMI handler in the processor. If certain
conditions are met - such as an interrupt not being triggered after a specified length of time - the NMI
handler can produce a warning and debugging information about the problem. This helps to identify and
prevent system lockups.

3.4. System management interrupts
System management interrupts (SMIs) are used to offer extended functionality, such as legacy hardware
device emulation. They can also be used for system management tasks. SMIs are similar to NMIs in that
they use a special electrical signalling line directly into the CPU, and are generally not able to be
masked.

When an SMI is received, the CPU will enter System Management Mode (SMM). In this mode, a very low-
level handler routine is run to handle the SMIs. The SMM is typically provided directly from the system
management firmware, often the BIOS or the EFI.

SMIs are most often used to provide legacy hardware emulation. A common example is to emulate a
floppy disk drive. If there is no floppy disk device attached to the system, a virtualized network-managed
emulation can be used instead. When the operating system attempts to access the floppy disk, an SMI is
triggered and a handler provides the operating system with an emulated device instead. The operating
system then treats the emulation as though it were the legacy device itself.

MRG Realtime can be adversely affected by SMIs because they take place without the direct involvement
of the operating system. A poorly written SMI handling routine may consume many milliseconds of CPU
time, and the operating system is not able to preempt the handler if it needs to. This situation creates
periodic high latencies in an otherwise well-tuned, highly responsive system. Unfortunately, because SMI
handlers can be used by a vendor to manage CPU temperature and fan control, it is not possible to
disable them. Instead, it is recommended that you notify the vendor of the problem.

Note

You can attempt to isolate SMIs on a MRG Realtime system using the hwlatdetect utility, which
is available in the rt-tests package. This utility is designed to measure periods of time during
which the CPU has been stolen by an SMI handling routine.
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3.5. Advanced programmable interrupt controller
The advanced programmable interrupt controller (APIC) was developed by Intel®  to provide the ability to
handle large amounts of interrupts, to allow each of these to be programmatically routed to a specific set
of available CPUs (and for this to be changed accordingly), to support inter-CPU communication, and to
remove the need for a large number of devices to share a single interrupt line.

APIC represents a series of devices and technologies that work together to generate, route, and handle
a large number of hardware interrupts in a scalable and manageable way. It uses a combination of a
local APIC built into each system CPU, and a number of Input/Outpt APICs that are connected directly to
hardware devices. When a hardware device generates an interrupt, it is detected by the IO-APIC it is
connected to, and then routed across the system APIC bus to a particular CPU. The operating system
knows which IO-APIC is connected to which device, and to which particular interrupt line within that
device because of a combination of information sources. Firstly, there is the ACPI DSDT (Advanced
Configuration and Power Interface Differentiated System Description Table) that includes information
about the specific wiring of the host system motherboard and peripheral components. Secondly, a device
provides certain information about its available interrupt sources. Together, these two sets of data
provide information about the overall interrupt hierarchy.

Complex APIC-based interrupt management strategies are possible, with the system APICs connected in
hierarchies, and delivering interrupts to CPUs in a load-balanced fashion rather than targeting a specific
CPU or set of CPUs.

Red Hat Enterprise MRG 2 Realtime Reference Guide

22



Part II. Application architecture
The MRG Realtime kernel provides a number of constructs that are designed to help software
developers build an application that performs to the highest possible standards. This section discusses
those features and how to use them.

Throughout this and the next sections, instructions are given for tuning the MRG Realtime kernel
directly. Most changes can also be performed using a tool called Tuna. It has a graphical interface, or
can be run through the command shell.

Tuna can be used to change attributes of threads and interrupts, such as scheduling policy, scheduler
priority and processor affinity. It is designed to be used on a running system, and changes take place
immediately. This allows any application-specific measurement tools to see and analyze system
performance immediately after the changes have been made.

Information on installing and using Tuna can be found in the MRG Tuna User Guide.
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Chapter 4. Threads and processes
Although all programs use threads and processes, MRG Realtime handles them in a different way to
standard Red Hat Enterprise Linux. This chapter explains the MRG Realtime approach to threads and
processes.

Each CPU core is limited in the amount of work it can handle. To achieve greater efficiency, applications
can execute different tasks simultaneously on multiple cores. This is called parallelizing.

Programs can be parallelized using threads. However, threads and processes are often confused, so it
is important to understand the differences in the terms.

Process
A UNIX®-style process is an operating system construct that contains:

1. Address mappings for virtual memory

2. An execution context (PC, stack, registers)

3. State/Accounting information

Linux processes started as exactly this style of process. When the concept of more than one
process running inside one address space was developed, Linux turned to a process structure
that shares an address space with another process. This works well, as long as the process
data structure is kept small. For the remainder of this document, the term process refers to an
independent address space, potentially containing multiple threads.

Thread
Strictly, a thread is a schedulable entity that contains:

1. A program counter (PC)

2. A register context

3. A stack pointer

Multiple threads can exist within a process.

When programming on a MRG Realtime system, there are two potential ways to parallelize the programs.

1. Use the fork and exec functions to create new processes

2. Use the Posix Threads (pthreads) API to create new threads within an already running process

Note

Evaluate how the components will interact before deciding how to parallelize them. If the
components are independent of one another and will not interact very much or at all then creating
a new address space and running as a new process is usually the better option. If, however, the
components will need to share data or communicate frequently, running them as threads within
one address space will usually be more efficient.
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Note

For more information, or for further reading, the following man pages and books are related to the
information given in this section:

fork(2)
exec(2)
Programming with POSIX Threads, David R. Butenhof, Addison-Wesley, ISBN 0-201-63392-2
Advanced Programming in the UNIX Environment, 2nd Ed., W. Richard Stevens and Stephen
A. Rago, Addison-Wesley, ISBN 0-201-43307-9
“POSIX Threads Programming”, Blaise Barney, Lawrence Livermore National Laboratory,
http://www.llnl.gov/computing/tutorials/pthreads/
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Chapter 5. Priorities and policies
All Linux threads have one of the following scheduling policies:

SCHED_OTHER or SCHED_NORMAL: The default policy

SCHED_BATCH: Similar to SCHED_OTHER, but with a throughput orientation

SCHED_IDLE: A lower priority than SCHED_OTHER

SCHED_FIFO: A first in/first out realtime policy

SCHED_RR: A round-robin realtime policy

The policies that are critical to MRG Realtime are SCHED_OTHER, SCHED_FIFO, and SCHED_RR.

SCHED_OTHER or SCHED_NORMAL is the default scheduling policy for Linux threads. It has a dynamic
priority that is changed by the system based on the characteristics of the thread. Another thing that
effects the priority of SCHED_OTHER threads is their nice value. The nice value is a number between -
20 (highest priority) and 19 (lowest priority). By default, SCHED_OTHER threads have a nice value of 0.
Adjusting the nice value will change the way the thread is handled.

Threads with a SCHED_FIFO policy will run ahead of SCHED_OTHER tasks. Instead of using nice
values, SCHED_FIFO uses a fixed priority between 1 (lowest) and 99 (highest). A SCHED_FIFO thread
with a priority of 1 will always be scheduled ahead of any SCHED_OTHER thread.

The SCHED_RR policy is very similar to the SCHED_FIFO policy. In the SCHED_RR policy, threads of
equal priority are scheduled in a round-robin fashion. Generally, SCHED_FIFO is preferred over 
SCHED_RR.

SCHED_FIFO and SCHED_RR threads will run until one of the following events occurs:

The thread goes to sleep or begins waiting for an event

A higher-priority realtime thread becomes ready to run

If one of these events does not occur, the threads will run indefinitely on that processor, and lower-
priority threads will not be given a chance to run. This can result in system service threads failing to run,
and operations such as memory swapping and filesystem data flushing not occurring as expected.

Table 5.1. Policy priorit ies

Policy Default  priority value Lowest priority value Highest priority
value

SCHED_FIFO 1 99

SCHED_RR 1 99

SCHED_OTHER 0 -20 19

Red Hat Enterprise MRG 2 Realtime Reference Guide

26



Chapter 6. Affinity
Each thread and interrupt source in the system has a processor affinity property. The operating system
scheduler uses this information to determine which threads and interrupts to run on which CPU.

Setting processor affinity, along with effective policy and priority settings, can help to achieve the
maximum possible performance. Applications will always need to compete for resources, especially CPU
time, with other processes. Depending on the application, related threads are often run on the same
core. Alternatively, one application thread can be allocated to one core.

Systems that perform multitasking are naturally more prone to indeterminism. Even high priority
applications may be delayed from executing while a lower priority application is in a critical section of
code. Once the low priority application has exited the critical section, the kernel may safely preempt the
low priority application and schedule the high priority application on the processor. Additionally, migrating
processes from one CPU to another can be costly due to cache invalidation. MRG Realtime includes
tools that address some of these issues and allow latencies to be better controlled.

Affinity is represented as a bitmask, where each bit in the mask represents a CPU core. If the bit is set to
1, then the thread or interrupt may run on that core; if 0 then the thread or interrupt is excluded from
running on the core. The default value for an affinity bitmask is all ones, meaning the thread or interrupt
may run on any core in the system.

By default, processes can run on any CPU. However, processes can be instructed to run on a
predetermined selection of CPUs, by changing the affinity of the process. Child processes inherent the
CPU affinities of their parents.

Some of the more typical affinity setups include:

Reserve one CPU core for all system processes and allow the application to run on the remainder of
the core, with one CPU core per application thread.

Allow a thread application and a given kernel thread (such as the network softirq or a driver thread)
on the same CPU.

Pair producer and consumer threads on each CPU.

It is recommended that affinity settings are designed in conjunction with the program, to better match the
expected behavior.

The usual practice for tuning affinities on a realtime system is to determine how many cores are needed
to run the application and then isolate those cores. This can be achieved using the Tuna tool, or
through the use of shell scripts to modify the bitmask value. The taskset command can be used to
change the affinity of a process, while modifying the /proc filesystem entry changes the affinity of an
interrupt.

Note

For more information, or for further reading, the following book and man page are related to the
information given in this section:

MRG Tuna User Guide
taskset(1)
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6.1. Using the taskset command to set processor affinity
The taskset command sets and checks affinity information for a given process. These tasks can also
be achieved using the Tuna tool.

Use the taskset command with the -p, or --pid option and the PID of the process to be checked. The -
c or --cpu-list displays the information as a numerical list of cores, instead of as a bitmask.

The following command checks the affinity of the process with PID 1000. In this case, PID 1000 is
permitted to use either CPU 0 or CPU 1:

# taskset -p -c 1000
pid 1000's current affinity list: 0,1

The affinity can be set by specifying the number of the CPU to which to bind the process. In this
example, PID 1000 could previously run on either CPU 0 or CPU 1, and the affinity has been changed so
that it can only run on CPU 1:

# taskset -p -c 1 1000
pid 1000's current affinity list: 0,1
pid 1000's new affinity list: 1

To define more than one CPU affinity, list both CPU numbers, separated by a comma:

# taskset -p -c 0,1 1000
pid 1000's current affinity list: 1
pid 1000's new affinity list: 0,1

The taskset command can also be used to start a new process with a particular affinity. This command
will run the /bin/my-app application on CPU 4:

# taskset -c 4 /bin/my-app

For further granularity, the priority and policy can also be set. This command runs the /bin/my-app
application on CPU 4, with a SCHED_FIFO policy and a priority of 78:

# taskset -c 5 chrt -f 78 /bin/my-app

6.2. Using the sched_getaffinity() system call to set processor
affinity
In addition to the taskset command, processor affinity can also be set using the 
sched_getaffinity() system call.

The following code excerpt retrieves the CPU affinity information for a specified PID. If the PID passed to
it is 0, it will return the affinity information for the current process:

int sched_getaffinity(pid_t pid, size_t setsize, const cpu_set_t *set)
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Note

For more information, or for further reading, the following man pages are related to the information
given in this section:

sched_getaffinity(2)
sched_setaffinity(2)
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Chapter 7. Thread synchronization
When threads require access to shared resources, it is coordinated using thread synchronization. The
three thread synchronization mechanisms used on Linux are:

1. Mutexes

2. Barriers

3. Condvars

7.1. Mutexes
The word mutex is derived from the term mutual exclusion. A mutex is a POSIX threads construct, and is
created using the pthread_create_mutex library call. A mutex serializes access to each section of
code, so that only one thread of an application is running the code at any one time.

Similar to a mutex is a futex, or Fast User muTEX, which is an internal mechanism used to implement
mutexes. Futexes use shared conventions between the kernel and the C library. This allows an
uncontended mutex to be locked or freed without a context switch to kernel space.

7.2. Barriers
Barriers operate in a very different way to other thread synchronization methods. Instead of serializing
access to code regions, barriers block all threads until a pre-determined number of them have
accumulated. The barrier will then allow all threads to continue. Barriers are used in situations where a
running application needs to be certain that all threads have completed their tasks before execution can
continue.

7.3. Condvars
A condvar, or condition variable, is a POSIX thread construct that waits for a particular condition to be
achieved before proceeding. In general the condition being signaled pertains to the state of data that the
thread shares with another thread. For example, a condvar can be used to signal that a data entry has
been put into a processing queue and a thread waiting to process data from the queue can now
proceed.

7.4. Other types of synchronization
Prior to the advent of POSIX threads, thread synchronization occurred between processes. The most
common mechanisms were the System V IPC calls for shared memory, message queues, and
semaphores. The use of the System V IPC calls has now been deprecated in favor of POSIX thread
calls.
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Chapter 8. Sockets
A socket is a bi-directional data transfer mechanism. They are used to transfer data between two
processes. The two processes can be running on the same system as Unix-domain or loopback
sockets, or on different systems as network sockets.

There are no special options or restriction to using sockets on a MRG Realtime system.

8.1. Socket options
There are two socket options that are relevant to MRG Realtime applications: TCP_NODELAY and 
TCP_CORK.

TCP_NODELAY

TCP is the most common transport protocol, which means it is often used to solve many different needs.
As new application and hardware features are developed, and kernel architecture optimizations are
made, TCP has had to introduce new heuristics to handle the changes effectively.

These heuristics can result in a program becoming unstable. Because the behavior changes as the
underlying operating system components change, they should be treated with care.

One example of heuristic behavior in TCP is that small buffers are delayed. This allows them to be sent
as one network packet. This generally works well, but it can also create latencies. For MRG Realtime
applications, TCP_NODELAY is a socket option that can be used to turn this behavior off. It can be
enabled through the setsockopt sockets API, with the following function:

int one = 1;
setsockopt(descriptor, SOL_TCP, TCP_NODELAY, &one, sizeof(one));

For this option to be used effectively, the applications must avoid doing small buffer writes, as TCP will
send these buffers as individual packets. TCP_NODELAY can also interact with other optimization
heuristics to result in poor overall performance.

If applications have several buffers that are logically related and that should be sent as one packet it will
achieve better latency and performance by building a contiguous packet before sending. The packet can
then be sent as one using a socket with TCP_NODELAY enabled.

Alternatively, if the memory buffers are logically related but not already contiguous, use them to build an
I/O vector. It can then be passed to the kernel using writev on a socket with TCP_NODELAY enabled.

TCP_CORK

Another TCP socket option that works in a similar way is TCP_CORK. When enabled, TCP will delay all
packets until the application removes the cork, and allows the stored packets to be sent. This allows
applications to build a packet in kernel space, which is useful when different libraries are being used to
provide layer abstractions.

The TCP_CORK option can can be enabled by using the following function:

int one = 1;
setsockopt(descriptor, SOL_TCP, TCP_CORK, &one, sizeof(one));

Enabling TCP_CORK is often referred to as corking the socket.
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In a situation where the kernel is not able to identify when to remove the cork, it can be manually
removed with the function:

int zero = 0;
setsockopt(descriptor, SOL_TCP, TCP_CORK, &zero, sizeof(zero));

Once the socket is uncorked, TCP will send the accumulated logical package immediately, without
waiting for further packets from the application.

Example 8.1. Using TCP_NODELAY and TCP_CORK

This example demonstrates the performance impact that TCP_NODELAY and TCP_CORK can have on
an application.

The server waits for packets of 30 bytes and then sends a 2 byte packet in response. To start with,
define the TCP port and the number of packets it should process. In this example, it is 10,000
packets:

$ ./tcp_nodelay_server 5001 10000

The server does not need to have any socket options set.

If the client is run without any arguments, the default socket options will be used. Use the no_delay
option to enable TCP_NODELAY socket options. Use the cork option to enable TCP_CORK. In all
cases it will send 15 packets, each of two bytes, and wait for a response from the server.

This example uses a loopback interface to demonstrate three variations.

In the first variation, neither TCP_NODELAY nor TCP_CORK are in use. This is a baseline
measurement. TCP coalesces writes and has to wait to check if the application has more data than
can optimally fit in the network packet:

$ ./tcp_nodelay_client localhost 5001 10000
10000 packets of 30 bytes sent in 400129.781250 ms: 0.749757 bytes/ms

The second variation uses TCP_NODELAY only. TCP is instructed not to coalesce small packets, but
to send buffers immediately. This improves performance significantly, but creates a large number of
network packets for each logical packet.

$ ./tcp_nodelay_client localhost 5001 10000 no_delay
10000 packets of 30 bytes sent in 1649.771240 ms: 181.843399 bytes/ms using 
TCP_NODELAY

The third variation uses TCP_CORK only. It halves the time required to the send the same number of
logical packets. This is because TCP coalesces full logical packets in its buffers, and sends fewer
overall network packets.

$ ./tcp_nodelay_client localhost 5001 10000 cork
10000 packets of 30 bytes sent in 850.796448 ms: 352.610779 bytes/ms using 
TCP_CORK

In this scenario, TCP_CORK is the best technique to use. It allows the application to precisely convey
the information that a packet is finished and must be sent without delay. When developing programs, if
they need to send bulk data from a file, consider using TCP_CORK with sendfile.
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Note

For more information, or for further reading, the following man page and example applications are
related to the information given in this section:

sendfile(2)
“TCP nagle sample applications”, which are example applications of ghost protocols written in
C. To download them, right-click and save from the following links:

http://oops.ghostprotocols.net:81/acme/tcp_nodelay_client.c
http://oops.ghostprotocols.net:81/acme/tcp_nodelay_server.c
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Chapter 9. Shared memory
One of the main advantages of program threads is that all threads created in one process context share
the same address space. This means that all data-structures become accessible to them. However, it is
not always appropriate for applications to use threads that share address space. This could be
because of a distributed development team, or the size of the application being developed, among other
reasons. In this case, separate processes might need to share part of the address space. This can be
achieved on both Red Hat Enterprise Linux and MRG Realtime Linux kernels by using shared memory.

The original mechanism for sharing a memory region between two processes was the System V IPC 
shmem  set of calls. These calls are quite capable, but overly complicated and cumbersome for the vast
majority of use cases. For this reason, they have been deprecated on the MRG Realtime kernel and
should no longer be used.

MRG Realtime uses POSIX shared memory calls, such as shm_open and mmap.

Note

For more information, or for further reading, the following man pages are related to the information
given in this section:

shm_open(3)
shm_overview(7)
mmap(2)
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Chapter 10. Shared libraries
Dynamic Shared Objects (DSOs) are commonly referred to as a shared library, and are used to share
code between separate process address spaces. The DSO is loaded once by the ld.so system
loader. From there, they are mapped into the address space of processes that require symbols from the
library. Until the first reference to a symbol is encountered it cannot be evaluated. Evaluating the symbol
only when it is referenced can be a source of latency. This is because memory pages can be on disk,
and caches can become invalidated. Evaluating symbols in advance is a safe side procedure that can
help to improve latency. .

Resolving symbols at program startup can slightly slow down program initialization. However, it also
avoids non-deterministic latencies during program execution that can be caused by symbol lookup.
Symbol resolution at application startup can be done using the LD_BIND_NOW environment variable.
Setting LD_BIND_NOW to any value other than null will cause the system loader to lookup all unresolved
symbols at program load time.

Note

For more information, or for further reading, the following man page is related to the information
given in this section:

ld.so(8)
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Part III. Library services
System commands are used to manipulate priorities, processor affinity and scheduling policies. It is also
possible to manipulate these elements from within user applications using library functions.

This section explains how to select priorities, processor affinity, and scheduler policies using library
functions, and how to observe the results of those changes.
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Chapter 11. Setting the scheduler
There are two different ways to configure and observe process configurations: the command line
utilities, and the Tuna graphical tool. This section uses the command line tools, but all actions can also
be performed using Tuna. There is more information on using the Tuna tool in the MRG Realtime
Tuning Guide: Using the Tuna Interface chapter.

11.1. Using chrt to set the scheduler
The chrt is used to check and adjust scheduler policies and priorities. It can start new processes with
the desired properties, or change the properties of a running process.

To check the attributes of a particular process, use the --pid or -p option alone to specify the process
ID (PID):

# chrt -p 468
pid 468's current scheduling policy: SCHED_FIFO
pid 468's current scheduling priority: 85

# chrt -p 476
pid 476's current scheduling policy: SCHED_OTHER
pid 476's current scheduling priority: 0

To set the scheduling policy of a process, use the appropriate command option:

Table 11.1. Policy options for the chrt command

Short option Long option Description

-f --fifo Set schedule to SCHED_FIFO

-o --other Set schedule to SCHED_OTHER

-r --rr Set schedule to SCHED_RR

To set the priority of a process, specify the value before the PID of the process that is being changed.
The following command will set the process with PID 1000 to SCHED_FIFO, with a priority of 50:

# chrt -f -p 50 1000

The following command will set the same process (PID 1000) to SCHED_OTHER, with a priority of 0:

# chrt -o -p 0 1000

To start a new application with a given policy and priority, specify the name of the application (and the
path, if necessary) along with the attributes. The following command will start /bin/my-app, with a policy
of SCHED_FIFO and a priority of 36:

# chrt -f 36 /bin/my-app
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Note

For more information, or for further reading, the following guide and man page are related to the
information given in this section:

Tuna User Guide
chrt(1)

11.2. Preemption
A process can voluntarily yield the CPU either because it has completed, or because it is waiting for an
event (such as data from a disk, a key press, or for a network packet).

A process can also involuntarily yield the CPU. This is referred to as preemption, and occurs when a
higher priority process wants to use the CPU. Preemption can have a particularly negative impact on
performance, and constant preemption can lead to a state known as thrashing. This problem occurs
when processes are constantly preempted and no process ever gets to run completely.

To check voluntary and involuntary preemption occurring on a single process, check the contents of the 
/proc/PID/status, where PID is the PID of the process. The following command checks the
preemption of the process with PID 1000:

# grep voluntary /proc/1000/status 
voluntary_ctxt_switches: 194529
nonvoluntary_ctxt_switches: 195338

Changing the priority of a task can help reduce involuntary preemption.

Note

For more information, or for further reading, the following guide and man page are related to the
information given in this section:

Tuna User Guide
grep(1)

11.3. Using library calls to set priority
Library calls are used to set the priority of non-realtime processes. These are:

nice

getpriority

setpriority

These functions operate by retrieving and adjusting the nice value of the process. The nicer a process
is, the lower its priority. Decreasing the nice value increments the priority.

Realtime processes use a different set of library calls to control policy and priority, which will be detailed
in this section.
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Important

The following functions all require the inclusion of a sched.h header file. Ensure you always
check the return codes from functions. The appropriate man pages outline the various codes
used.

Further reading

For more information, or for further reading, the following man pages are related to the information
given in this section:

nice(2)
getpriority(2)
setpriority(2)

11.3.1. sched_getscheduler
The sched_getscheduler() function retrieves the scheduler policy for a given PID:

#include <sched.h>

int policy;

policy = sched_getscheduler(pid_t pid);

The symbols SCHED_OTHER, SCHED_RR and SCHED_FIFO are also defined in sched.h. They can be
used to check the defined policy or to set the policy:
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#include <stdio.h>
#include <unistd.h>
#include <sched.h>

main(int argc, char *argv[])
{
  pid_t pid;
  int policy;

  if (argc < 2)
    pid = 0;
  else
    pid = atoi(argv[1]);

  printf("Scheduler Policy for PID: %d  -> ", pid);

  policy = sched_getscheduler(pid);

  switch(policy) {
    case SCHED_OTHER: printf("SCHED_OTHER\n"); break;
    case SCHED_RR:   printf("SCHED_RR\n"); break;
    case SCHED_FIFO:  printf("SCHED_FIFO\n"); break;
    default:   printf("Unknown...\n");
  }
 }

11.3.2. sched_setscheduler
The scheduler policy and other parameters can be set using the sched_setscheduler() function.
Currently, realtime policies have one parameter, sched_priority. This parameter is used to adjust
the priority of the process.

The sched_setscheduler function requires three parameters, in the form: 
sched_setscheduler(pid_t pid, int policy, const struct sched_param *sp);

Note

The sched_setscheduler(2) man page lists all possible return values of 
sched_setscheduler, including the error codes.

If the pid is zero, the sched_setscheduler() function will act on the calling process.

The following code excerpt sets the scheduler policy of the current process to SCHED_FIFO and the
priority to 50:

struct sched_param sp = { .sched_priority = 50 };
int ret;

ret = sched_setscheduler(0, SCHED_FIFO, &sp);
if (ret == -1) {
  perror("sched_setscheduler");
  return 1;
}

11.3.3. sched_getparam  and sched_setparam
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The sched_setparam() function is used to set the scheduling parameters of a particular process.
This can then be verified using the sched_getparam() function.

Unlike the sched_getscheduler() function, which only returns the scheduling policy, the 
sched_getparam() function returns all scheduling parameters for the given process.

The following code excerpt reads the priority of a given realtime process and increments it by two:

struct sched_param sp;
int ret;

/* reads priority and increments it by 2 */
ret = sched_getparam(0, &sp);
sp.sched_priority += 2;

/* sets the new priority */
ret = sched_setparam(0, &sp);

Note

If the code above was used in a real application, it would also need to check the return values
from the function, and handle any errors appropriately.

Important

Be careful with incrementing priorities. Continually adding two as in this example might eventually
lead to an invalid priority.

11.3.4 . sched_get_priority_min and sched_get_priority_max
The sched_get_priority_min and sched_get_priority_max functions are used to check the
valid priority range for a given scheduler policy.

The only possible error in this call will occur if the specified scheduler policy is not known by the system.
In this case, the function will return -1 and errno will be set to EINVAL.
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#include <stdio.h>
#include <unistd.h>
#include <sched.h>

main()
{

  printf("Valid priority range for SCHED_OTHER: %d - %d\n",
         sched_get_priority_min(SCHED_OTHER),
         sched_get_priority_max(SCHED_OTHER));

  printf("Valid priority range for SCHED_FIFO: %d - %d\n",
         sched_get_priority_min(SCHED_FIFO),
         sched_get_priority_max(SCHED_FIFO));

  printf("Valid priority range for SCHED_RR: %d - %d\n",
         sched_get_priority_min(SCHED_RR),
         sched_get_priority_max(SCHED_RR));
}

Note

Both SCHED_FIFO and SCHED_RR can be any number within the range of 1 to 99. POSIX is not
guaranteed to honor this range, however, and portable programs should use these calls.

11.3.5. sched_rr_get_interval
The SCHED_RR policy differs slightly from the SCHED_FIFO policy. SCHED_RR allocates concurrent
processes that have the same priority in a round-robin rotation. In this way, each process is assigned a
timeslice. The sched_rr_get_interval() function will report the timeslice that has been allocated to
each process.

Even though POSIX requires that this function must work only with SCHED_RR processes, the 
sched_rr_get_interval() function is able to retrieve the timeslice length of any process on Linux.

The timeslice information is returned as a timespec, or the number of seconds and nanoseconds since
the base time of 00:00:00 GMT, 1 January 1970:

struct timespec {
  time_t tv_sec;  /* seconds */
  long tv_nsec; /* nanoseconds */
}

The sched_rr_get_interval function requires the PID of the process, and a struct timespec:
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#include <stdio.h>
#include <sched.h>

main()
{
   struct timespec ts;
   int ret;

   /* real apps must check return values */
   ret = sched_rr_get_interval(0, &ts);

   printf("Timeslice: %lu.%lu\n", ts.tv_sec, ts.tv_nsec);
}

The following commands run the test program sched_03, with varying policies and priorities. Processes
with a SCHED_FIFO policy will return a timeslice of 0 seconds and 0 nanoseconds, indicating that it is
infinite:

$ chrt -o 0 ./sched_03
Timeslice: 0.38994072

$ chrt -r 10 ./sched_03
Timeslice: 0.99984800

$ chrt -f 10 ./sched_03
Timeslice: 0.0
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Chapter 12. Creating threads and processes
Process and thread creation are subject to system load, and integral to resource allocation and CPU
time sharing. In some scenarios, a delay between an event occurring and it being handled is acceptable.
In most situations, however, it creates unwanted and unnecessary latencies. To prevent this, the pool of
processes or threads should always be created in advance, before they are called upon to service a
request. For more information see Chapter 4, Threads and processes.
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Chapter 13. Mmap
The mmap system call allows a file (or parts of a file) to be mapped to memory. This allows the file
content to be changed with a memory operation, avoiding system calls and input/output operations.

Always synchronize the changes to disk, and plan for a process hang that could result in data loss.

Note

For more information, or for further reading, the following man page and book are related to the
information given in this section:

mmap(2)
Linux System Programming by Robert Love
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Chapter 14. System calls

14.1. sched_yield
The sched_yield function was originally designed to cause a processor to select a different process
other than the running one. This type of request is prone to failure when issued from within a poorly-
written application.

When the sched_yield() function is used within processes with realtime priorities, it can display
unexpected behavior. The process that has called sched_yield gets moved to the tail of the queue of
processes running at that priority. When this occurs in a situation where there are no other processes
running at the same priority, the process that called sched_yield continues running. If the priority of
that process is high, it can potentially create a busy loop, rendering the machine unusable.

In general, do not use sched_yield on realtime processes.

14.2. getrusage()
The getrusage function is used to retrieve important information from a given process or its threads.
This will not provide all the information available, but will report on information such as context switches
and page faults.
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Chapter 15. Timestamping

15.1. Hardware clocks
Multiprocessor systems such as NUMA or SMP have multiple instances of clock sources. The way
clocks interact among themselves and the way they react to system events, such as CPU frequency
scaling or entering energy economy modes, determine whether they are suitable clock sources for the
Realtime kernel.

During boot time the kernel discovers the available clock sources and selects one to use. The preferred
clock source is the T ime Stamp Counter (TSC), but if it is not available the High Precision Event T imer
(HPET) is the second best option. However, not all systems have HPET clocks and some HPET clocks
can be unreliable.

In the absence of TSC and HPET, other options include the ACPI Power Management T imer (ACPI_PM),
the Programmable Interval T imer (PIT) and the Real T ime Clock (RTC). The last two options are either
costly to read or have a low resolution (time granularity), therefore they are sub-optimal for the Realtime
kernel.

For the list of the available clock sources in your system, view the 
/sys/devices/system/clocksource/clocksource0/available_clocksource file:

# cat /sys/devices/system/clocksource/clocksource0/available_clocksource 
tsc hpet acpi_pm

In the sample output above, the TSC, HPET and ACPI_PM clock sources are available.

The clock source currently in use can be inspected by reading the 
/sys/devices/system/clocksource/clocksource0/current_clocksource file:

# cat /sys/devices/system/clocksource/clocksource0/current_clocksource
tsc

It is possible to select a different clock source, from the list presented in the 
/sys/devices/system/clocksource/clocksource0/available_clocksource file. To do so,
write the name of the clock source into the 
/sys/devices/system/clocksource/clocksource0/current_clocksource file. For example,
the following command sets HPET as the clock source in use:

# echo hpet > /sys/devices/system/clocksource/clocksource0/current_clocksource

Important

The kernel selects the best available clock source. Overriding the selected clock source is not
recommended unless the implications are well understood.

While TSC is generally the preferred clock source, it also has several shortcomings. For example, the
TSC clock can stop when the system goes to an idle state, or become out of sync when their CPUs
enter deeper C-states (energy saving states) and perform speed- or frequency-scaling operations.

However, you can work around these TSC shortcomings by configuring additional kernel boot
parameters. For instance, the idle=poll parameter forces the clock to avoid entering the idle state, and
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the processor.max_cstate=1 parameter prevents the clock from entering deeper C-states. Note
however that in both cases there would be an increase on energy consumption, as the system would
always run at top speed.

Note

For a comprehensive list of clock sources see the Timing Measurements chapter in
Understanding The Linux Kernel by Daniel P. Bovet and Marco Cesati.

15.1.1. Reading hardware clock sources
Reading from the TSC is, basically, reading a register from the processor. Reading from the HPET clock
means reading a memory area. Reading from the TSC is faster, which provides a significant
performance advantage when timestamping hundreds of thousands of messages per second.

Using a simple program that reads the current clock source 10,000,000 times in a row, it is possible to
observe the duration required to read the clock sources available:
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Example 15.1. Comparing the cost of reading hardware clock sources

In this example, the clock source currently in use is TSC, as shown by the output of the cat
command. The time command is used to view the duration required to read the clock source 10
million times.

# cat /sys/devices/system/clocksource/clocksource0/current_clocksource
tsc
# time ./clock_timing

 real 0m0.601s
 user 0m0.592s
 sys 0m0.002s

The clock source is changed to HPET to compare the duration required to generate 10 million
timestamps:

# echo hpet > /sys/devices/system/clocksource/clocksource0/current_clocksource
# cat /sys/devices/system/clocksource/clocksource0/current_clocksource
hpet
# time ./clock_timing

 real 0m12.263s
 user 0m12.197s
 sys 0m0.001s

The steps are repeated with the ACPI_PM clock source:

# echo acpi_pm > 
/sys/devices/system/clocksource/clocksource0/current_clocksource
# cat /sys/devices/system/clocksource/clocksource0/current_clocksource
acpi_pm
# time ./clock_timing

 real 0m24.461s
 user 0m0.504s
 sys 0m23.776s

The time(1) man page provides detailed information on how to use the command and interpret its
output. The example above uses the following categories:

real: The total time spent beginning from program invocation until the process ends. real includes
user and sys times, and will usually be larger than the sum of the latter two. If this process is
interrupted by an application with higher priority, or by a system event such as a hardware interrupt
(IRQ), this time spent waiting is also computed under real.

user: The time the process spent in user space, performing tasks that did not require kernel
intervention.

sys: The time spent by the kernel while performing tasks required by the user process. These tasks
include opening files, reading and writing to files or I/O ports, memory allocation, thread creation and
network related activities.

As seen from the results of Example 15.1, “Comparing the cost of reading hardware clock sources”, the
efficiency of generating timestamps, in descending order, is: TSC, HPET, ACPI_PM. This is because of
the increased overhead to access time values from the HPET and ACPI_PM timers.
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15.2. POSIX clocks
POSIX is a standard for implementing and representing time sources. In contrast to the hardware clock,
which is selected by the kernel and implemented across the system; the POSIX clock can be selected by
each application, without affecting other applications in the system.

CLOCK_REALTIME: it represents the time in the real world, also referred to as 'wall time' meaning the
time as read from the clock on the wall. This clock is used to timestamp events, and when interfacing
with the user. It can be modified by an user with the right privileges. However, user modification
should be used with caution as it can lead to erroneous data if the clock has its value changed
between two readings.

CLOCK_MONOTONIC: represents the time monotonically increased since the system boot. This clock
cannot be set by any process, and is the preferred clock for calculating the time difference between
events. The following examples in this section use CLOCK_MONOTONIC as the POSIX clock.

Note

For more information on POSIX clocks see the following man page and book:

clock_gettime()
Linux System Programming by Robert Love

The function used to read a given POSIX clock is clock_gettime(), which is defined at <time.h>.
The clock_gettime() command takes two parameters: the POSIX clock ID and a timespec structure
which will be filled with the duration used to read the clock. The following example shows the function to
measure the cost of reading the clock:

Example 15.2. Using clock_gettime() to measure the cost of reading POSIX clocks

#include <time.h>

main()
{
 int rc;
 long i;
 struct timespec ts;

 for(i=0; i<10000000; i++) {
  rc = clock_gettime(CLOCK_MONOTONIC, &ts);
 }
}

You can improve upon the example above, for example by using more strings to verify the return code of 
clock_gettime(), to verify the value of the rc variable, or to ensure the content of the ts structure is
to be trusted. The clock_gettime() manpage provides more information to help you write more
reliable applications.
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Important

Programs using the clock_gettime() function must be linked with the rt library by adding '-
lrt' to the gcc command line.

cc clock_timing.c -o clock_timing -lrt

15.2.1. CLOCK_MONOTONIC_COARSE and CLOCK_REALTIME_COARSE
The functions such as clock_gettime() and gettimeofday() have a counterpart in the kernel, in
the form of a system call. When the user process calls clock_gettime(), the corresponding C library
(glibc) calls the sys_clock_gettime() system call which performs the requested operation and
then returns the result to the user program.

However, this context switch from user application to kernel has a cost. Even though this cost is very
low, if the operation is repeated thousands of times, the accumulated cost can have an impact on the
overall performance of the application.

To avoid the context switch to the kernel, thus making it faster to read the clock, support for the 
CLOCK_MONOTONIC_COARSE and CLOCK_REALTIME_COARSE POSIX clocks was created in the form
of a VDSO library function. The _COARSE variants are faster to read and have a precision (also known
as resolution) of one millisecond (ms).

15.2.2. Using clock_getres() to compare clock resolution
Using the clock_getres() function you can check the resolution of a given POSIX clock. 
clock_getres() uses the same two parameters as clock_gettime(): the ID of the POSIX clock to
be used, and a pointer to the timespec structure where the result is returned. The following function
enables you to compare the precision between CLOCK_MONOTONIC and CLOCK_MONOTONIC_COARSE:

main()
{
int rc;
struct timespec res;

 rc = clock_getres(CLOCK_MONOTONIC, &res);
 if (!rc)
  printf("CLOCK_MONOTONIC: %ldns\n", res.tv_nsec); 
 rc = clock_getres(CLOCK_MONOTONIC_COARSE, &res);
 if (!rc)
  printf("CLOCK_MONOTONIC_COARSE: %ldns\n", res.tv_nsec); 
}
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Example 15.3. Sample output of clock_getres

TSC:
 # ./clock_resolution 
 CLOCK_MONOTONIC: 1ns
 CLOCK_MONOTONIC_COARSE: 999848ns  (about 1ms)

HPET:
 # ./clock_resolution 
 CLOCK_MONOTONIC: 1ns
 CLOCK_MONOTONIC_COARSE: 999848ns  (about 1ms)

ACPI_PM:
 # ./clock_resolution 
 CLOCK_MONOTONIC: 1ns
 CLOCK_MONOTONIC_COARSE: 999848ns  (about 1ms)

15.2.3. Using C code to compare clock resolution
Using the following code snippet it is possible to observe the format of the data read from the 
CLOCK_MONOTONIC POSIX clock. All nine digits in the tv_nsec field of the timespec structure are
meaningful as the clock has a nanosecond resolution. The example function, named clock_test.c, is
as follows:

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

main()
{
int i;
struct timespec ts;

 for(i=0; i<5; i++) {
  clock_gettime(CLOCK_MONOTONIC, &ts);
  printf("%ld.%ld\n", ts.tv_sec, ts.tv_nsec);
  usleep(200);
 }
}
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Example 15.4 . Sample output of clock_test.c and clock_test_coarse.c

As specified in the code above, the function reads the clock five times, with 200 microseconds
between each reading:

# cc clock_test.c -o clock_test -lrt
# ./clock_test 
218449.986980853
218449.987330908
218449.987590716
218449.987849549
218449.988108248

Using the same source code, renaming it to clock_test_coarse.c and replacing 
CLOCK_MONOTONIC with CLOCK_MONOTONIC_COARSE, the result would look something like:

# ./clock_test_coarse 
218550.844862154
218550.844862154
218550.844862154
218550.845862154
218550.845862154

The _COARSE clocks have a one millisecond precision, therefore only the first three digits of the 
tv_nsec field of the timespec structure are significant. The result above could be read as:

# ./clock_test_coarse 
218550.844
218550.844
218550.844
218550.845
218550.845

The _COARSE variants of the POSIX clocks are particularly useful in cases where timestamping can be
performed with millisecond precision. The benefits are more evident on systems which use hardware
clocks with high costs for the reading operations, such as ACPI_PM.

15.2.4 . Using the time command to compare cost of reading clocks
Using the time command to read the clock source 10 million times in a row, you can compare the costs
of reading CLOCK_MONOTONIC and CLOCK_MONOTONIC_COARSE representations of the hardware
clocks available. The following example uses TSC, HPET and ACPI_PM hardware clocks. For more
information on how to decipher the output of the time command see Section 15.1.1, “Reading hardware
clock sources”.
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Example 15.5. Comparing the cost of reading POSIX clocks

TSC:
 # time ./clock_timing_monotonic

 real 0m0.567s
 user 0m0.559s
 sys 0m0.002s

 # time ./clock_timing_monotonic_coarse

 real 0m0.120s
 user 0m0.118s
 sys 0m0.001s

HPET:
 # time ./clock_timing_monotonic

 real 0m12.257s
 user 0m12.179s
 sys 0m0.002s

 # time ./clock_timing_monotonic_coarse

 real 0m0.119s
 user 0m0.118s
 sys 0m0.000s

ACPI_PM:
 # time ./clock_timing_monotonic

 real 0m25.524s
 user 0m0.451s
 sys 0m24.932s

 # time ./clock_timing_monotonic_coarse

 real 0m0.119s
 user 0m0.117s
 sys 0m0.001s

As seen from Example 15.5, “Comparing the cost of reading POSIX clocks”, the sys time (the time spent
by the kernel to perform tasks required by the user process) is greatly reduced when the _COARSE
clocks are used. This is particularly evident in the ACPI_PM clock timings, which indicates that _COARSE
variants of POSIX clocks yield high performance gains on clocks with high reading costs.
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Chapter 16. More information

16.1. Reporting bugs
Diagnosing a bug

Before you file a bug report, follow these steps to diagnose where the problem has been introduced.
This will greatly assist in rectifying the problem.

1. Check that you have the latest version of the Red Hat Enterprise Linux 6 kernel, then boot into it
from the grub menu. Try reproducing the problem with the standard kernel. If the problem still
occurs, report a bug against Red Hat Enterprise Linux 6 not MRG Realtime.

2. If the problem does not occur when using the standard kernel, then the bug is probably the result
of changes introduced in either:

a. The upstream kernel on which MRG Realtime is based. For example, Red Hat Enterprise
Linux 6 is based on 2.6.32 and MRG Realtime is based on 3.6

b. MRG Realtime specific enhancements Red Hat has applied on top of the baseline (3.6)
kernel

To determine the problem, try to reproduce the problem on an unmodified upstream 3.6 kernel. For
this reason, in addition to providing the MRG Realtime kernel, we also provide a vanilla kernel
variant. The vanilla kernel is the upstream kernel build without the MRG Realtime additions.

Reporting a bug

If you have determined that the bug is specific to MRG Realtime follow these instructions to enter a bug
report:

1. Create a Bugzilla account.

2. Log in and click on Enter A New Bug Report.

3. You will need to identify the product the bug occurs in. MRG Realtime appears under Red Hat
Enterprise MRG  in the Red Hat products list. It is important that you choose the correct product.

4. Continue to enter the bug information by assigning an appropriate component and giving a
detailed problem description. When entering the problem description be sure to include details of
whether you were able to reproduce the problem on the standard Red Hat Enterprise Linux 6 or
the supplied vanilla kernel.

16.2. Further reading
Red Hat Enterprise MRG product information

http://www.redhat.com/mrg

MRG Realtime Tuning Guide and other Red Hat Enterprise MRG documentation

http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/

Mailing list

To post to the list, send mail to rhemrg-users-list@redhat.com

Subscribe to the mailing list at: https://www.redhat.com/mailman/listinfo/rhemrg-users-list
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