
Joshua Wulf

Red Hat Enterprise MRG 2
Messaging Programming
Reference

A Guide to Programming with Red Enterprise Messaging

Red Hat Enterprise MRG 2 Messaging Programming Reference

A Guide to Programming with Red Enterprise Messaging

Joshua Wulf
jwulf @redhat .com

Legal Notice
Copyright 2013 Red Hat, Inc.. The text of and illustrations in this document are licensed by Red Hat under

a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-

BY-SA is available at . In accordance with CC-BY-SA, if you distribute this document or an adaptation of

it, you must provide the URL for the original version. Red Hat, as the licensor of this document, waives the

right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by

applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the

Infinity Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other

countries. Linux is the registered trademark of Linus Torvalds in the United States and other countries.

Java is a registered trademark of Oracle and/or its aff iliates. XFS is a trademark of Silicon Graphics

International Corp. or its subsidiaries in the United States and/or other countries. MySQL is a registered

trademark of MySQL AB in the United States, the European Union and other countries. All other

trademarks are the property of their respective owners. 1801 Varsity Drive Raleigh, NC 27606-2072 USA

Phone: +1 919 754 3700 Phone: 888 733 4281 Fax: +1 919 754 3701

Keywords

Abstract
This guide provides information for developers writing applications that utilize the Red Hat Enterprise

Messaging Server

9
9
9
9

. .

10
10
10
10
10
10
10
11
11

. .

12
12
12
12
13
13
13
14
14
14
14
15
15
15
15

. .

16
16
16
16
16
17
17
18
18
18
18
19
19
19
19
20
20
20
21
21
21

. .

Table of Contents

Preface
1. Document Conventions

1.1. Default Programming Language for Code Samples
2. We Appreciate Your Feedback

Chapter 1. Introduction
1.1. Red Hat Enterprise MRG Messaging
1.2. Apache Qpid
1.3. AMQP - Advanced Message Queuing Protocol
1.4. AMQP 0-10
1.5. Differences between AMQP 0-10 and AMQP 1.0

Broker Architecture
Broker Management
Symmetry

Chapter 2. AMQP Model Overview
2.1. The Producer - Consumer Model
2.2. Consumer-driven messaging
2.3. Message Producer (Sender)
2.4. Message
2.5. Message Broker
2.6. Routing Key
2.7. Message Subject
2.8. Message Properties
2.9. Connection
2.10. Session
2.11. Exchange
2.12. Binding
2.13. Message Queue
2.14. Message Consumer (Receiver)

Chapter 3. Getting Started
3.1. Getting Started with Python

3.1.1. Python Messaging Development
3.1.2. Python Client Libraries
3.1.3. Install Python Client Libraries (Red Hat Enterprise Linux 5)
3.1.4. Install Python Client Libraries (Red Hat Enterprise Linux 6)
3.1.5. Python "Hello World" Program Listing

3.2. Getting Started with .NET
3.2.1. .NET Messaging Development
3.2.2. Windows SDK
3.2.3. Windows SDK Contents
3.2.4. Obtain the Windows SDK
3.2.5. Install Windows SDK on a 32-bit system
3.2.6. Install Windows SDK on a 64-bit system
3.2.7. .NET C# "Hello World" Program Listing

3.3. Getting Started with C++
3.3.1. C++ Messaging Development
3.3.2. C++ on Linux

3.3.2.1. C++ Client Libraries
3.3.2.2. Install C++ Client Libraries (Red Hat Enterprise Linux 5)
3.3.2.3. Install C++ Client Libraries (Red Hat Enterprise Linux 6)

Red Hat Enterprise MRG 2 Messaging Programming Reference

6

22
22
22
22
23
23
23
24
24
25
25
25
27
27
27
27
27
28
28
30

36
36
39
40
40
41
41
41
41
43
43
44
44
45
46
47
47
48
48
48
48
49
49
50
50
50
51
51
51
52
53
53
53
53
53

. .

3.3.3. C++ on Windows
3.3.3.1. Windows SDK
3.3.3.2. Windows SDK Contents
3.3.3.3. Obtain the Windows SDK
3.3.3.4. Install Windows SDK on a 32-bit system
3.3.3.5. Install Windows SDK on a 64-bit system
3.3.3.6. C++ "Hello World" Program Listing

3.4. Getting Started with Java
3.4.1. Java Client Libraries
3.4.2. Install Java Client Libraries (Red Hat Enterprise Linux 5)
3.4.3. Install Java Client Libraries (Red Hat Enterprise Linux 6)
3.4.4. Java JMS "Hello World" Program Listing

3.5. Getting Started with Ruby
3.5.1. Ruby Messaging Development
3.5.2. Ruby Client Libraries
3.5.3. Install Ruby Client Libraries (Red Hat Enterprise Linux 5)
3.5.4. Install Ruby Client Libraries (Red Hat Enterprise Linux 6)

3.6. Hello World
3.6.1. Red Hat Enterprise Messaging "Hello World"
3.6.2. "Hello World" Walk-through

Chapter 4 . Beyond "Hello World"
4.1. Subscriptions
4.2. Publishing
4.3. AMQP Exchange Types
4.4. Pre-configured Exchanges
4.5. The Default Exchange

4.5.1. Default Exchange
4.5.2. Publish to a Queue using the Default Exchange
4.5.3. Subscribe to the Default Exchange

4.6. Direct Exchange
4.6.1. Direct Exchange
4.6.2. Create a Direct Exchange using qpid-config
4.6.3. Create a Direct Exchange from an application
4.6.4. Publish to a Direct Exchange
4.6.5. Subscribe to a Direct Exchange
4.6.6. Exclusive Bindings for Direct Exchanges

4.7. Fanout Exchange
4.7.1. The pre-configured Fanout Exchange
4.7.2. Fanout Exchange
4.7.3. Create a Fanout Exchange using qpid-config
4.7.4. Create a Fanout Exchange from an application
4.7.5. Publish to Multiple Queues using the Fanout Exchange
4.7.6. Subscribe to a Fanout Exchange

4.8. Topic Exchange
4.8.1. The pre-configured Topic Exchange
4.8.2. Topic Exchange
4.8.3. Create a Topic Exchange using qpid-config
4.8.4. Create a Topic Exchange from an application
4.8.5. Publish to a Topic Exchange
4.8.6. Subscribe to a Topic Exchange

4.9. Headers Exchange
4.9.1. The pre-configured Headers Exchange
4.9.2. Headers Exchange
4.9.3. Create a Headers Exchange using qpid-config
4.9.4. Create a Headers Exchange from an application

Table of Contents

7

53
54
54
54
54
55
55

57
57
57
58
58
58
58
59
59
59
59
63
66
66
67
68

. .

69
69
69
70
70
70
71
74
74
74
74
75
80
80
80
81
81
81
85
86
86
86
87
87
87
88
88
88

. .

94
94

. .

4.9.5. Publish to a Headers Exchange
4.9.6. Subscribe to a Headers Exchange

4.10. XML Exchange
4.10.1. Custom Exchange Types
4.10.2. The pre-configured XML Exchange Type
4.10.3. Create an XML Exchange
4.10.4. Subscribe to the XML Exchange

Chapter 5. Message Delivery and Acceptance
5.1. The Lifecycle of a Message

5.1.1. Message Delivery Overview
5.1.2. Message Generation
5.1.3. Message Send over Reliable Link
5.1.4. Message Send over Unreliable Link
5.1.5. Message Distribution on the Broker
5.1.6. Message Receive over Reliable Link
5.1.7. Message Receive over Unreliable Link

5.2. Browsing and Consuming Messages
5.2.1. Message Acquisition and Acceptance
5.2.2. Message Acquisition and Acceptance on an Unreliable Link
5.2.3. Message Rejection
5.2.4. Receiving Messages from Multiple Sources
5.2.5. Rejected and Orphaned Messages
5.2.6. Alternate Exchange

Chapter 6. Advanced Queue Features
6.1. Browse-only Queues
6.2. Ignore Locally Published Messages
6.3. Exclusive Queues
6.4. Automatically Deleted Queues

6.4.1. Automatically Deleted Queues
6.4.2. Automatically Deleted Queue Example
6.4.3. Queue Deletion Checks

6.5. Last Value (LV) Queues
6.5.1. Last Value Queues
6.5.2. Declaring a Last Value Queue
6.5.3. Last Value Queue Example
6.5.4. Last Value Queue Command-line Example

6.6. Priority Queuing
6.6.1. Priority Queuing
6.6.2. Declaring a Priority Queue
6.6.3. Considerations when using Priority Queues
6.6.4. Priority Queue Demonstration
6.6.5. Fairshare Feature

6.7. Message Groups
6.7.1. Message Groups
6.7.2. Create a Queue with Message Groups enabled
6.7.3. Message Group Consumer Requirements
6.7.4. Configure a Queue for Message Groups using qpid-config
6.7.5. Create a Queue with Message Groups enabled
6.7.6. Default Group
6.7.7. Override the Default Group Name
6.7.8. Message Groups Demonstration

Chapter 7. Asynchronous Messaging
7.1. Asynchronous Operations

Red Hat Enterprise MRG 2 Messaging Programming Reference

8

94
94
95
95
95
96
97
98

100
100
100
101
102

103
103
103
104
104
104
105
106
106
107
107
107
108
108
108
108
109
109
109
109
110
110
110
111
111
111
111

. .

113
113
113
113
113
114
114
114
116
117
117
118
118
120

. .

7.2. Asynchronous Sending
7.2.1. Synchronous and Asynchronous Send
7.2.2. Sender Capacity
7.2.3. Set Sender Capacity
7.2.4. Query Sender Capacity
7.2.5. Avoiding a Blocked Asynchronous Send
7.2.6. Asynchronous Message Sending Example
7.2.7. Asynchronous Send and Link Reliability

7.3. Asynchronous Receiving
7.3.1. Asynchronous Message Retrieval (Prefetch)
7.3.2. Enable Receiver Prefetch
7.3.3. Asynchronously Acknowledging Received Messages
7.3.4. Asynchronous Receive and Link Reliability

Chapter 8. Reliability and Quality of Service
8.1. Link Reliability

8.1.1. Reliable Link
8.1.2. Unreliable Link

8.2. Queue Sizing
8.2.1. Controlling Queue Size
8.2.2. Queue Threshold Alerts

8.3. Producer Flow Control
8.3.1. Flow Control
8.3.2. Queue Flow State
8.3.3. Broker Default Flow Thresholds
8.3.4. Disable Broker-wide Default Flow Thresholds
8.3.5. Per-Queue Flow Thresholds

8.4. Credit-based Flow Control
8.4.1. Flow Control Using Credit
8.4.2. Credit Allocation Modes

8.5. Durable Queues
8.5.1. Durable Queues
8.5.2. Persistent Messages
8.5.3. Create a durable queue in an application
8.5.4. Mark a message as persistent
8.5.5. Durable Message State After Restart
8.5.6. Message Journal
8.5.7. Configure the Message Journal in an application

8.6. Transactions
8.6.1. Transactions
8.6.2. Transactions Example

Chapter 9. Qpid Management Framework (QMF)
9.1. QMF - Qpid Management Framework
9.2. QMF Versions
9.3. Creating Exchanges from an Application
9.4. Broker Exchange and Queue Configuration via QMF
9.5. Command Messages
9.6. QMF Command Message Structure
9.7. Create Command
9.8. Delete Command
9.9. List Command
9.10. Queue and Exchange Creation using QMF
9.11. QMF Events
9.12. QMF Client Connection Events
9.13. ACL Lookup Query Methods

Preface

9

120
121
121
121
122
124
128

129
129
129
129
130
132
139
141

. .

14 5
145
145
145
146

. .

14 9
149
149
149
149
150
150

. .

151
151
151
151
151
152
152
153
154
157

. .

158
158
158

. .

160
160

. .

161
161
161
161
162
162

. .

164. .

Method: Lookup
Method: LookupPublish
Management Properties and Statistics
Example
ACL File acl-test-01-rules.acl
Python Script acl-test-01.py

9.14. Using QMF in a Cluster

Chapter 10. The Qpid Messaging API
10.1. Handling Exceptions

10.1.1. Messaging Exceptions Reference
10.1.2. C++ Messaging Exceptions Class Hierarchy
10.1.3. Connection Exceptions
10.1.4. Session Exceptions
10.1.5. Sender Exceptions
10.1.6. Receiver Exceptions

Chapter 11. Addresses
11.1. x-declare Parameters
11.2. Connection Options
11.3. Setting Connection Options
11.4. Connection Options Reference

Chapter 12. Message Timestamping
12.1. Message Timestamping
12.2. Enable Message Timestamping at Broker Start-up
12.3. Enable Message Timestamping from an Application
12.4. Access a Message Timestamp in Python
12.5. Access a Message Timestamp in C++
12.6. Using AMQ 0-10 Message Property Keys for T imestamping

Chapter 13. Maps and Lists
13.1. Maps and Lists in Message Content
13.2. Map and List Representation in Native Data Types
13.3. Differences between Qpid and JMS Map Message Content
13.4. Qpid Maps and Lists in Python
13.5. Python Data Types in Maps
13.6. Qpid Maps and Lists in C++
13.7. C++ Data Types in Maps
13.8. Qpid Maps and Lists in .NET C#
13.9. C# Data Types and .NET bindings

Chapter 14 . The Request/Response Pattern
14.1. The Request/Response Pattern
14.2. Request/Response C++ Example

Chapter 15. Performance Tips
15.1. Apache Qpid Programming for Performance

Chapter 16. Cluster Failover
16.1. Messaging Clusters
16.2. Cluster Failover in C++
16.3. Cluster Failover in Python
16.4. Cluster Failover in C#
16.5. Failover Behavior in Java JMS Clients

Chapter 17. Logging

Red Hat Enterprise MRG 2 Messaging Programming Reference

10

164
164
164

167
167
167
167
167
167
167

. .

169
169
170
171
175

. .

176
176
176
176
177
180
180
182
182
183
183
183

. .

188
188
188
188
190
192
194
194
197
199
201
204

. .

205
205
205
205

. .

208
208

. .

209. .

17.1. Logging in C++
17.2. Logging in Python
17.3. Change the logging level at runtime

Chapter 18. Security
18.1. Security features provided by Qpid
18.2. Authentication
18.3. SASL Support in Windows Clients
18.4. Enable Kerberos authentication
18.5. Enable SSL
18.6. SSL Client Environment Variables for C++ Clients

Chapter 19. The AMQP 0-10 mapping
19.1. The AMQP 0-10 mapping
19.2. AMQ 0-10 Message Property Keys
19.3. AMQP Routing Key and Message Subject
19.4. Using AMQ 0-10 Message Property Keys for T imestamping

Chapter 20. Using the Qpid JMS client
20.1. Apache Qpid JNDI Properties for AMQP Messaging
20.2. JNDI Properties for Apache Qpid
20.3. Connection URLs

Broker list URL
20.4. Java JMS Message Properties
20.5. JMS MapMessage Types
20.6. JMS ListMessage
20.7. JMS Client Logging
20.8. JMS Client Configuration

20.8.1. Configuration Methods and Granularity
20.8.2. Qpid JVM Arguments

Chapter 21. .NET Binding for Qpid C++ Messaging
21.1. .NET Binding for the C++ Messaging Client Examples
21.2. .NET Binding Class Mapping to Underlying C++ Messaging API
21.3. .NET Binding for the C++ Messaging API Class: Address
21.4. .NET Binding for the C++ Messaging API Class: Connection
21.5. .NET Binding for the C++ Messaging API Class: Duration
21.6. .NET Binding for the C++ Messaging API Class: FailoverUpdates
21.7. .NET Binding for the C++ Messaging API Class: Message
21.8. .NET Binding for the C++ Messaging API Class: Receiver
21.9. .NET Binding for the C++ Messaging API Class: Sender
21.10. .NET Binding for the C++ Messaging API Class: Session
21.11. .NET Class: SessionReceiver

Exchange and Queue Declaration Arguments
A.1. Exchange and Queue Argument Reference

Exchange options
Queue options

Changes
B.1. New for 2.3

Revision History

Chapter 1. Introduction

11

Red Hat Enterprise MRG 2 Messaging Programming Reference

12

Preface
1. Document Conventions

1.1. Default Programming Language for Code Samples
If this book contains programming samples in more than one programming language, you can
set your preferred programming language here.

When code samples are available in mult iple languages, your language will be presented by
default .

2. We Appreciate Your Feedback
Each section in this book has an small link at the end, on the right hand side of the page:
"Something wrong with this?". Click this link to give us feedback.

C#/.NET C++ Java JavaScript Node.js Python Ruby

Chapter 2. AMQP Model Overview

13

Report a bug

Report a bug

Report a bug

Report a bug

Chapter 1. Introduction
1.1. Red Hat Enterprise MRG Messaging
Red Hat Enterprise Messaging is a highly scalable AMQP messaging broker and set of client
libraries and tools based on the Apache Qpid open source project. It is integrated, tested, and
supported by Red Hat for Enterprise customers.

1.2. Apache Qpid
Apache Qpid is a cross-platform Enterprise Messaging system that implements the Advanced
Messaging Queue Protocol (AMQP). It is developed as an Apache Software Foundation open
source project.

With Apache Qpid we strive to wrap an intuit ive and easy to use messaging API around the
AMQP model to handle as much of the complexity as possible (while st ill allowing you access to
the nuts and bolts when you really need it), so that you can build highly performant and scalable
applicat ions with integrated messaging quickly and easily.

1.3. AMQP - Advanced Message Queuing Protocol
AMQP, the Advanced Message Queuing Protocol, is an open standard for interoperable
messaging at the wire protocol level. Message brokers that implement AMQP can communicate
with each other and exchange messages without the need for adapters or bridges. An AMQP
message broker can provide first-class native language bindings for mult iple programming
languages; so AMQP-based messaging is a good choice for cross-platform compatibility across
the Enterprise.

The AMQP standard is stewarded by a vendor-neutral OASIS Technical Committee.

1.4. AMQP 0-10
The version of AMQP supported by MRG Messaging 2.2 is AMQP 0-10.

1.5. Differences between AMQP 0-10 and AMQP
1.0
AMQP 1.0 is the latest standard for AMQP. The current version of Red Hat Enterprise Messaging
supports AMQP 0-10, a previous version of the standard. Some of the most significant
differences between AMQP 0-10 and AMQP 1.0 are described here to provide context to the
AMQP model used in this product.

Broker Architecture

Red Hat Enterprise MRG 2 Messaging Programming Reference

14

http://qpid.apache.org/
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8121-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Red+Hat+Enterprise+MRG+Messaging&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8109-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Apache+Qpid&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
http://www.amqp.org/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=amqp
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8115-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=AMQP+-+Advanced+Message+Queuing+Protocol&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
http://www.amqp.org/specification/0-10/amqp-org-download
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8091-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=AMQP+0-10&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

AMQP 0-10 provides a specificat ion for the on-the-wire protocol *and* the broker architecture
(in the form of exchange, bindings, and queues). AMQP 1.0, on the other hand, provides only a
protocol specificat ion, saying nothing about broker architecture. AMQP 1.0 does not require
that there be a broker, exchanges, or bindings. It does not rules them out either.

The MRG-M broker is an "AMQP 0-10" broker that will, in the near future, provide protocol
support for both AMQP 0-10 and AMQP 1.0.

Concepts such as "exchange" and "binding" are 0-10 concepts. They will, however continue to
be used long after the 0-10 protocol is deprecated.

Broker Management
AMQP 0-10 defines protocol commands that are used to manage the broker. Examples include
"Queue Declare", "Queue Delete", "Queue Query", etc. AMQP 1.0 does not include such
commands and assumes that such capability will be added at a higher layer.

Note that the MRG-M broker also has a layered management capability (called Qpid
Management Framework, QMF). It is expected that QMF will continue to be used in the future
over AMQP 1.0.

Symmetry
The AMQP 0-10 protocol is asymmetric in that each connection is defined to have a "client" end
and a "broker" end. As such, AMQP 0-10 is very broker-oriented.

AMQP 1.0 is symmetric and places no such constraints on the roles of connection endpoints.
1.0 permits brokerless point-to-point communication. It also permits the creation of
servers/intermediaries that are not brokers in a strict sense.

Chapter 2. AMQP Model Overview

15

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=13327-371271+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Differences+between+AMQP+0-10+and+AMQP+1.0&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Chapter 2. AMQP Model
Overview
2.1. The Producer - Consumer Model
AMQP Messaging uses a Producer - Consumer model. Communication between the message
producers and message consumers is decoupled by a broker that provides exchanges and
queues. This allows applicat ions to produce and consume data at different rates. Producers
send messages to exchanges on the message broker. Consumers subscribe to exchanges
that contain messages of interest, creating subscript ion queues that buffer messages for the
consumer. Message producers can also create subscript ion queues and publish them for
consuming applicat ions.

The messaging broker functions as a decoupling layer, providing exchanges that distribute
messages, the ability for consumers and producers to create public and private queues and
subscribe them to exchanges, and buffering messages that are sent at-will by producer
applicat ions, and delivered on-demand to interested consumers.

2.2. Consumer-driven messaging
AMQP uses consumer-driven messaging. In tradit ional point-to-point messaging a message
producer publishes messages to a queue. The message producer is responsible for knowing
which queue will receive the messages. The queue in this model is an endpoint for a single
consumer. In the tradit ional publish-subscribe model, the queue can be an endpoint for mult iple
consumers, who can receive individual copies of the messages sent to queue, or can share
access to unique messages, taking them in a round-robin fashion. In AMQP all of these styles of
messaging are supported: sending direct ly to a known queue for a single consumer or for
mult iple consumers, allowing consumers to browse their own copies of messages on the queue
or mandating that they share access to unique instances of messages in a round-robin fashion.

AMQP implements these patterns using a flexible architecture where senders send their
messages to an exchange. The exchange distributes the message to the queues subscribed
to the exchange. This allows all the previously described models, and also provides the
opportunity for message consumers to drive the conversation. Message producing applicat ions
do not need to be aware of new applicat ions that come online and are interested in the
message producer's messages. Message consumers can create queues and bind them to
exchanges.

AMQP has a number of exchange types that support different distribution mechanisms. When
subscribing to an exchange, message consumers can bind their queue with parameters that act
as a filter on messages. By choosing which exchange type to use, and using binding keys to
filter the messages from that exchange, you can build extremely flexible, fast, and extensible
messaging systems using AMQP.

2.3. Message Producer (Sender)
Message producing applicat ions send messages to an exchange on the message broker. The
exchange then distributes the messages to the queues that are subscribed to the exchange.
Depending on the type of exchange and the parameters used to subscribe the queue,

Red Hat Enterprise MRG 2 Messaging Programming Reference

16

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8097-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=The+Producer+-+Consumer+Model&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=9990-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Consumer-driven+messaging&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Report a bug

messages are filtered so that each queue subscribed to the exchange gets only the messages
that are of interest.

Message producers can send their messages with no knowledge of or interest in the
consumers. Because they send to an exchange, they are decoupled from the receivers of the
messages. Consumers can then control how and what messages they receive. Producers can
also control how their messages are consumed by creating and subscribing a queue, and route
the messages they send to the exchange to that queue. In this way a wide range of designs
are possible.

2.4. Message
Applicat ions produce information that is of interest to other applicat ions. To share that
information, they can create a portable unit that wraps the information and makes it
transportable - a message.

A message consists of a message content - information of interest to a message receiving
applicat ion; and message headers, information about the message itself, such as where it
should be routed, how it should be treated while in transit , and what has happened to it during
its transmission.

2.5. Message Broker
Messages can be sent direct ly between two applicat ions, but this requires the two applicat ions
to know about each other when they are written; it also means that both applicat ions need to
be online at the same t ime and producing and consuming data at the same rate to
communicate. This hard-wiring of communication between applicat ions does not scale as more
and more applicat ions become interested in the information being shared.

A message broker provides a decoupling layer. By sending messages to a third party - the
message broker - a message-producing applicat ion no longer has to know about all the
applicat ions that are interested in its information. The message broker can provide queues
that carry the messages to interested message consuming applicat ions. The message broker
also provides a buffer that allows the applicat ions involved to produce and consume data at
different rates.

Red Hat Enterprise Messaging provides a messaging broker based on the Apache Qpid project.
It implements AMQP (Advanced Messaging Queue Protocol) messaging.

2.6. Routing Key
The Routing Key is a string in the message that is used by the message broker to route the
message for delivery. In Red Hat Enterprise Messaging, the message subject is used for
routing.

Messages have an internal x-ampq-0.10-routing-key property. However, this is managed by
the Qpid Messaging API, and you do not need to manually access or set this property. The
exception to this is if you are exchanging messages with another AMQP system. In that case
you should understand how the Qpid Messaging API manages this property based on message
and sender subject.

Chapter 3. Getting Started

17

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8143-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Message+Producer+%28Sender%29&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8120-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Message&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10194-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Message+Broker&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Report a bug

Report a bug

Report a bug

See Also:

Section 19.3, “AMQP Routing Key and Message Subject”

2.7. Message Subject
A message has a subject property. This subject is used for message routing, and is
synonomous with routing key.

Since the message subject is used for routing, it is not analogous to an email subject. In an
email message the email address is used to route the email message to its recipient, and the
email subject is available to describe the contents of the message. Since the message subject
in a Qpid message is used to route a message, it is somewhat more like an email address,
including the ability to send an email to one or mult iple recipients with a single address.

A message's subject can be blank, it can be explicit ly set manually, or it can be automatically
set when the message is sent based on where it is to be routed.

Since the message subject can be automatically set when it is sent, you can develop
applicat ions where you never deal with the message subject, allowing it to be set by a sender.
Or you can use a more generic sender, and set the subject of messages to influence their
routing. A range of options are possible.

Suffice it to say that the subject of a message, whether set manually by you or automatically
by a sender object, prescribes where the message will go.

2.8. Message Properties
Message propert ies are a list of key:value pairs that can be set for a message. Some
predefined propert ies are used by the message broker to determine how to treat messages
while they are in transit ; these message propert ies can be set to ensure quality of service and
guaranteed delivery. Other user-defined message propert ies can be set for applicat ion-
specific functionality.

2.9. Connection
Connections in AMQP are network connections between the message broker and a message
producer or message consumer.

2.10. Session
A session is a scoped conversation between a client applicat ion and the messaging broker. A
session uses an connection for its communication, and it provides a scope for exclusive access
to resources, and for the lifet ime of a resource that is scoped to the session.

Note that mult iple dist inct sessions can use the same connection.

Red Hat Enterprise MRG 2 Messaging Programming Reference

18

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8068-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Routing+Key&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10195-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Message+Subject&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8070-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Message+Properties&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8107-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Connection&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8140-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Session&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Report a bug

Report a bug

2.11. Exchange
In AMQP an exchange is a destination on the messaging broker that receives messages from
senders. After receving a message, the exchange distributes a copy of the message to
queues that are bound to the exchange. Consuming applicat ions retrieve messages from
those queues. Queues are bound to exchanges using binding keys that specify which
messages from the exchange are of interest to the consumer. The queues buffer messages.
This allows many consuming applicat ions to receive messages from a single sender at different
rates.

There are various types of exchanges that provide different distribution algorithms. The
parameters used to bind queues to an exchange interact with the exchange's distribution
algorithm to enable sophist icated routing schemas that are highly-performant.

2.12. Binding
Message queues are bound to exchanges using a binding. The binding is a descript ion of which
messages from the exchange are of interest to this queue. Different types of exchanges
provide different distribution algorithms, so the content of the binding used to subscribe a
queue to an exchange depends on the type of exchange as well as the interest of the
subscriber.

2.13. Message Queue
Message Queues are the mechanism for consuming applicat ions to subscribe to messages
that are of interest.

Queues receive messages from exchanges, and buffer those messages until they are
consumed by message consumers. Those message consumers can browse the queue, or can
acquire messages from the queue. Messages can be returned to the queue for redelivery, or
they can be rejected by a consumer.

Mult iple consumers can share a queue, or a queue may be exclusive to a single consumer.

Message producers can create and bind a queue to an exchange and make it available for
consumers, or they can send to an exchange and leave it up to consumers to create queues
and bind them to the exchange to receive messages of interest.

Temporary private message queues can be created and used as a response channel. Message
queues can be set to be deleted by the broker when the applicat ion using them disconnects.
They can be configured to group messages, to update messages in the queue with newly-
arriving copies of messages, and to priorit ise certain messages.

2.14. Message Consumer (Receiver)
Message-consuming applicat ions receive messages from the messaging broker. They do this
by creating queues and binding them to an exchange on the messaging broker with a binding
key.

Chapter 3. Getting Started

19

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8047-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Exchange&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8072-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Binding&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8049-319298+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Message+Queue&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8159-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Message+Consumer+%28Receiver%29&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Chapter 3. Getting Started
3.1. Getting Started with Python

3.1.1. Python Messaging Development
Python is a cross-platform dynamically interpreted language that is extremely easy to use for
prototyping. Because it is interpreted and not compiled, the turn around t ime from coding to
test ing is fast. This makes it very good for test ing and experimenting. It can be used like a
script ing language, and can also be used for developing fairly large applicat ions.

Many of the examples in this documentation use Python code to illustrate principles of
programming messaging applicat ions using Red Hat Enterprise Messaging. To run these sample
programs is as simple as cutt ing and pasting the code into a file, then calling the python
interpreter to execute the file.

Aside from the light-weight prototyping aspect, perhaps the most useful feature of Python for
Messaging development is the ability to run the Python interpreter interactively. You can try
things out and inspect the effect and state of objects in real-t ime.

The Python API for Apache Qpid is a first-class supported API in Red Hat Enterprise Messaging.

3.1.2. Python Client Libraries
There are three libraries for Python client development:

python-qpid

Apache Qpid Python client library.

python-qpid-qmf

Queue Management Framework (QMF) Python client library.

python-saslwrapper

Python bindings for the saslwrapper library.

3.1.3. Install Python Client Libraries (Red Hat
Enterprise Linux 5)
The Python client libraries for Red Hat Enterprise Linux 5 are available via the Red Hat Customer
Portal.

If your machine uses Red Hat Network classic management you can install the Python client
libraries via the yum command.

Subscribe your system to the Red Hat MRG Messaging (for RHEL-5 Server) 2 channel.

Once your system is subscribed to this channel, with root privileges run the command:

Red Hat Enterprise MRG 2 Messaging Programming Reference

20

http://www.python.org/
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10294-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Python+Messaging+Development&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=9520-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Python+Client+Libraries&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
http://access.redhat.com

Report a bug

Report a bug

yum install python-qpid python-qpid-qmf python-saslwrapper

3.1.4. Install Python Client Libraries (Red Hat
Enterprise Linux 6)
The Python client libraries for Red Hat Enterprise Linux 6 are available via the Red Hat Customer
Portal.

If your machine uses Red Hat Network classic management you can install the Python client
libraries via the yum command.

The Python client libraries are in three base channels:

Red Hat Enterprise Linux Server 6
Red Hat Enterprise Linux Workstat ion 6
Red Hat Enterprise Linux Client 6

Subscribe your system to one of the base channels.

When your system is subscribed to a base channel, with root privileges run the command:

yum install python-qpid python-qpid-qmf python-saslwrapper

3.1.5. Python "Hello World" Program Listing

See Also:

Section 3.6.2, “"Hello World" Walk-through”

Python

import sys
from qpid.messaging import *

connection = Connection("localhost:5672")

try:
 connection.open()
 session = connection.session()

 sender = session.sender("amq.topic")
 receiver = session.receiver("amq.topic")

 message = Message("Hello World!")
 sender.send(message)

 fetchedmessage = receiver.fetch(timeout=1)
 print fetchedmessage.content
 session.acknowledge()

except MessagingError,m:
 print m

connection.close()

Chapter 3. Getting Started

21

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=9511-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Install+Python+Client+Libraries+%28Red+Hat+Enterprise+Linux+5%29&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
http://access.redhat.com
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=9512-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Install+Python+Client+Libraries+%28Red+Hat+Enterprise+Linux+6%29&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Report a bug

3.2. Getting Started with .NET

3.2.1. .NET Messaging Development
All .NET languages are supported using the C++ Messaging API. The most significant difference
between .NET development and the other languages is that in a .NET environment the broker is
always running on a remote server. With Python, C++, and Java development it is possible to
run the broker and the client on the same machine during development, and the example code
assumes this. All connections with .NET clients, however, are to a broker running remotely.

While developing and test ing against a remote server it is important to configure the firewall
correct ly. This step can be skipped when the broker is running locally, but is crucial when the
broker is running on a remote server.

3.2.2. Windows SDK
The MRG Messaging Windows SDK is a download containing necessary files for developing
native C++ (unmanaged) and .NET (managed) clients for Windows.

3.2.3. Windows SDK Contents
The Windows SDK contains the following directories and files:

\bin

Precompiled binary (.dll and .exe) files and the associated debug program database
(.pdb) files
Boost library files
Microsoft Visual Studio 2008 MSVC90 runtime library files

\include

A directory tree of .h files

\lib

The linker .lib files that correspond to files in /bin

\docs

Apache Qpid C++ API Reference

\examples

A Visual Studio solut ion file and associated project files to demonstrate using the WinSDK
in unmanaged C++

\dotnet_examples

A Visual Studio solut ion file and associated project files to demonstrate using the WinSDK

Red Hat Enterprise MRG 2 Messaging Programming Reference

22

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=9932-374586+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Python+%22Hello+World%22+Program+Listing&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10293-188482+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=.NET+Messaging+Development&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=6952-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Windows+SDK&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Report a bug

Report a bug

in C#

\management

A python script ing code set for generating QMF data structures

3.2.4. Obtain the Windows SDK
Log in to the Red Hat Customer Portal.

Click on Downloads in the top menu, and select Channels from the sub-menu. The "Full
Software Channel List" page appears.

Click the Filter by Product Channel combobox and select Red Hat Enterprise MRG, then
click the Filter button. The Red Hat Enterprise MRG channels are returned, including Red Hat
MRG Messaging (for non-Linux) 2.

Click the IA-32 link next to the Red Hat MRG Messaging (for non-Linux) 2 channel. The MRG
Messaging v. 2 (for non-Linux platforms) channel page appears.

Click on the Downloads link underneath the Channel name (not the Downloads link the top
menu).A list of available Windows SDK downloads appears.

Click on an available Windows SDK to download it .

3.2.5. Install Windows SDK on a 32-bit system
1. Obtain the 32-bit Windows SDK from the Red Hat Customer Portal.
2. Unzip the downloaded Windows SDK to your filesystem.
3. Run the Microsoft C++ Redistributable installer located in the /bin directory of the SDK.

3.2.6. Install Windows SDK on a 64-bit system
1. Obtain the 64-bit Windows SDK from the Red Hat Customer Portal.
2. Unzip the downloaded Windows SDK to your filesystem.
3. Download and install the 64-bit Microsoft C++ Redistributable installer from the Microsoft

Download Center.

3.2.7. .NET C# "Hello World" Program Listing
The .NET binding for the Qpid C++ Messaging API applies to all .NET Framework managed code
languages. C# is presented as an illustrat ive example.

C#/.NET

Chapter 3. Getting Started

23

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=7063-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Windows+SDK+Contents&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
http://access.redhat.com
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=7064-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Obtain+the+Windows+SDK&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://rhn.redhat.com/rhn/software/channel/downloads/Download.do?cid=12022
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=6953-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Install+Windows+SDK+on+a+32-bit+system&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://rhn.redhat.com/rhn/software/channel/downloads/Download.do?cid=12022
http://www.microsoft.com/download/en/details.aspx?displaylang=en[-553384282]id=15336
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=6954-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Install+Windows+SDK+on+a+64-bit+system&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

See Also:

Section 3.6.2, “"Hello World" Walk-through”

3.3. Getting Started with C++

3.3.1. C++ Messaging Development
The open source Apache Qpid broker, on which Red Hat Enterprise Messaging is based, is
available as a Java and as C++ broker. It is the C++ broker that is used to build Red Hat
Enterprise Messaging.

There are some small differences between the Python and C++ APIs. Because the broker itself
is written in C++, in those few areas where the C++ API differs from the Python API it is the
general rule that the C++ API is the more fully-featured, and more extensively explored by
users.

3.3.2. C++ on Linux

using System;
using Org.Apache.Qpid.Messaging;

namespace Org.Apache.Qpid.Messaging {
 class Program {
 static void Main(string[] args) {
 String broker = args.Length > 0 ? args[0] : "localhost:5672";
 String address = args.Length > 1 ? args[1] : "amq.topic";

 Connection connection = null;
 try {
 connection = new Connection(broker);
 connection.Open();
 Session session = connection.CreateSession();

 Receiver receiver = session.CreateReceiver(address);
 Sender sender = session.CreateSender(address);

 sender.Send(new Message("Hello world!"));

 Message message = new Message();
 message = receiver.Fetch(DurationConstants.SECOND * 1);
 Console.WriteLine("{0}", message.GetContent());
 session.Acknowledge();

 connection.Close();
 } catch (Exception e) {
 Console.WriteLine("Exception {0}.", e);
 if (connection != null)
 connection.Close();
 }
 }
 }
}

Red Hat Enterprise MRG 2 Messaging Programming Reference

24

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8113-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=.NET+C%23+%22Hello+World%22+Program+Listing&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10291-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=C%2B%2B+Messaging+Development&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Report a bug

3.3.2.1. C++ Client Libraries
There are five packages for C++ client development:

qpid-cpp-client

Apache Qpid C++ client library.

qpid-cpp-client-ssl

SSL support for clients.

qpid-cpp-client-rdma

RDMA Protocol support (including Infiniband) for Qpid clients.

qpid-cpp-client-devel

Header files and tools for developing Qpid C++ clients.

qpidd-cpp-client-devel-docs

AMQP client development documentation.

3.3.2.2. Install C++ Client Libraries (Red Hat Enterprise Linux 5)
The C++ client libraries for Red Hat Enterprise Linux 5 are available via the Red Hat Customer
Portal.

If your machine uses Red Hat Network classic management you can install the C++ client
libraries via the yum command.

Subscribe your system to the Red Hat MRG Messaging (for RHEL-5 Server) 2 channel.

Once your system is subscribed to this channel, with root privileges run the command:

yum install qpid-cpp-client qpid-cpp-client-rdma qpid-cpp-client-ssl qpid-cpp-
client-devel

3.3.2.3. Install C++ Client Libraries (Red Hat Enterprise Linux 6)
The C++ client libraries for Red Hat Enterprise Linux 6 are available via the Red Hat Customer
Portal.

If your machine uses Red Hat Network classic management you can install the C++ client
libraries via the yum command.

Subscribe your system to the Red Hat MRG Messaging v.2 (for RHEL-6 Server) channel.

Once your system is subscribed to this channel, with root privileges run the command:

yum install qpid-cpp-client qpid-cpp-client-rdma qpid-cpp-client-ssl qpid-cpp-
client-devel

Chapter 3. Getting Started

25

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=9522-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=C%2B%2B+Client+Libraries&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://access.redhat.com
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=9509-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Install+C%2B%2B+Client+Libraries+%28Red+Hat+Enterprise+Linux+5%29&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://access.redhat.com
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=9514-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Install+C%2B%2B+Client+Libraries+%28Red+Hat+Enterprise+Linux+6%29&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

3.3.3. C++ on Windows
3.3.3.1. Windows SDK
The MRG Messaging Windows SDK is a download containing necessary files for developing
native C++ (unmanaged) and .NET (managed) clients for Windows.

3.3.3.2. Windows SDK Contents
The Windows SDK contains the following directories and files:

\bin

Precompiled binary (.dll and .exe) files and the associated debug program database
(.pdb) files
Boost library files
Microsoft Visual Studio 2008 MSVC90 runtime library files

\include

A directory tree of .h files

\lib

The linker .lib files that correspond to files in /bin

\docs

Apache Qpid C++ API Reference

\examples

A Visual Studio solut ion file and associated project files to demonstrate using the WinSDK
in unmanaged C++

\dotnet_examples

A Visual Studio solut ion file and associated project files to demonstrate using the WinSDK
in C#

\management

A python script ing code set for generating QMF data structures

3.3.3.3. Obtain the Windows SDK
Log in to the Red Hat Customer Portal.

Click on Downloads in the top menu, and select Channels from the sub-menu. The "Full
Software Channel List" page appears.

Click the Filter by Product Channel combobox and select Red Hat Enterprise MRG, then
click the Filter button. The Red Hat Enterprise MRG channels are returned, including Red Hat

Red Hat Enterprise MRG 2 Messaging Programming Reference

26

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=6952-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Windows+SDK&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=7063-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Windows+SDK+Contents&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
http://access.redhat.com

Report a bug

Report a bug

Report a bug

MRG Messaging (for non-Linux) 2.

Click the IA-32 link next to the Red Hat MRG Messaging (for non-Linux) 2 channel. The MRG
Messaging v. 2 (for non-Linux platforms) channel page appears.

Click on the Downloads link underneath the Channel name (not the Downloads link the top
menu).A list of available Windows SDK downloads appears.

Click on an available Windows SDK to download it .

3.3.3.4. Install Windows SDK on a 32-bit system

1. Obtain the 32-bit Windows SDK from the Red Hat Customer Portal.
2. Unzip the downloaded Windows SDK to your filesystem.
3. Run the Microsoft C++ Redistributable installer located in the /bin directory of the SDK.

3.3.3.5. Install Windows SDK on a 64-bit system

1. Obtain the 64-bit Windows SDK from the Red Hat Customer Portal.
2. Unzip the downloaded Windows SDK to your filesystem.
3. Download and install the 64-bit Microsoft C++ Redistributable installer from the Microsoft

Download Center.

3.3.3.6. C++ "Hello World" Program Listing
C++

Chapter 3. Getting Started

27

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=7064-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Obtain+the+Windows+SDK&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://rhn.redhat.com/rhn/software/channel/downloads/Download.do?cid=12022
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=6953-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Install+Windows+SDK+on+a+32-bit+system&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://rhn.redhat.com/rhn/software/channel/downloads/Download.do?cid=12022
http://www.microsoft.com/download/en/details.aspx?displaylang=en[-553384282]id=15336
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=6954-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Install+Windows+SDK+on+a+64-bit+system&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

See Also:

Section 3.6.2, “"Hello World" Walk-through”

3.4. Getting Started with Java

3.4.1. Java Client Libraries
There are three libraries for Java client development:

qpid-java-client

The Java implementation of the Qpid client

qpid-java-common

Common files for the Qpid Java client

qpid-java-example

Programming examples

#include <qpid/messaging/Connection.h>
#include <qpid/messaging/Message.h>
#include <qpid/messaging/Receiver.h>
#include <qpid/messaging/Sender.h>
#include <qpid/messaging/Session.h>

#include <iostream>

using namespace qpid::messaging;

int main(int argc, char** argv) {
 std::string broker = argc > 1 ? argv[1] : "localhost:5672";
 std::string address = argc > 2 ? argv[2] : "amq.topic";
 Connection connection(broker);
 try {
 connection.open();
 Session session = connection.createSession();

 Receiver receiver = session.createReceiver(address);
 Sender sender = session.createSender(address);

 sender.send(Message("Hello world!"));

 Message message = receiver.fetch(Duration::SECOND * 1);
 std::cout << message.getContent() << std::endl;
 session.acknowledge();

 connection.close();
 return 0;
 } catch(const std::exception& error) {
 std::cerr << error.what() << std::endl;
 connection.close();
 return 1;
 }
}

Red Hat Enterprise MRG 2 Messaging Programming Reference

28

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8083-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=C%2B%2B+%22Hello+World%22+Program+Listing&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Report a bug

3.4.2. Install Java Client Libraries (Red Hat Enterprise
Linux 5)
The Java client development libraries for Red Hat Enterprise Linux 5 are available via the Red Hat
Customer Portal.

1. Subscribe your system to the Red Hat MRG Messaging v.2 (for RHEL 5 Server)
channel.

2. Install the Java client development libraries using the yum command:

yum install qpid-java-client qpid-java-common qpid-java-example

3.4.3. Install Java Client Libraries (Red Hat Enterprise
Linux 6)
The Java client development libraries for Red Hat Enterprise Linux 6 are available via the Red Hat
Network.

To install the Java development packages:

1. Subscribe your system to the Additional Services Channels for Red Hat
Enterprise Linux 6 / MRG Messaging v.2 (for RHEL-6 Server) channel.

2. Run the following yum command with root privileges:

yum install qpid-java-client qpid-java-common qpid-java-example

3.4.4. Java JMS "Hello World" Program Listing
This program is available, along with other examples, in the qpid-java-examples package.

Java

Chapter 3. Getting Started

29

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=9523-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Java+Client+Libraries&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://access.redhat.com
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=9508-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Install+Java+Client+Libraries+%28Red+Hat+Enterprise+Linux+5%29&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://access.redhat.com
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=9516-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Install+Java+Client+Libraries+%28Red+Hat+Enterprise+Linux+6%29&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Here is the content of the Hello World example JNDI propert ies file, hello.properties:

java.naming.factory.initial
 = org.apache.qpid.jndi.PropertiesFileInitialContextFactory

connectionfactory.[jndiname] = [ConnectionURL]
connectionfactory.qpidConnectionfactory
 = amqp://guest:guest@clientid/test?brokerlist='tcp://localhost:5672'
destination.[jndiname] = [address_string]
destination.topicExchange = amq.topic

package org.apache.qpid.example.jmsexample.hello;

import javax.jms.*;
import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Properties;

public class Hello {

 public Hello() {
 }

 public static void main(String[] args) {
 Hello producer = new Hello();
 producer.runTest();
 }

 private void runTest() {
 try {
 Properties properties = new Properties();
 properties.load(this.getClass().getResourceAsStream("hello.properties"));
 Context context = new InitialContext(properties);

 ConnectionFactory connectionFactory
 = (ConnectionFactory) context.lookup("qpidConnectionfactory");
 Connection connection = connectionFactory.createConnection();
 connection.start();

 Session session=connection.createSession(false,Session.AUTO_ACKNOWLEDGE);
 Destination destination = (Destination) context.lookup("topicExchange");

 MessageProducer messageProducer = session.createProducer(destination);
 MessageConsumer messageConsumer = session.createConsumer(destination);

 TextMessage message = session.createTextMessage("Hello world!");
 messageProducer.send(message);

 message = (TextMessage)messageConsumer.receive();
 System.out.println(message.getText());

 connection.close();
 context.close();
 }
 catch (Exception exp) {
 exp.printStackTrace();
 }
 }
}

Red Hat Enterprise MRG 2 Messaging Programming Reference

30

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8039-241598+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Java+JMS+%22Hello+World%22+Program+Listing&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Report a bug

3.5. Getting Started with Ruby

3.5.1. Ruby Messaging Development
The Ruby programming language does not have the same level of support as the other
languages. There are libraries that allow you to access the Qpid Management Framework (QMF),
but no supported client libraries for the standard messaging API.

3.5.2. Ruby Client Libraries
There are two libraries for Ruby client development:

ruby-qpid-qmf

Ruby QMF bindings

ruby-saslwrapper

Ruby bindings for the saslwrapper library

Note: There is a ruby-qpid package in Red Hat Enterprise Linux 6, but it is not compatible with
the Qpid broker in MRG Messaging 2.

3.5.3. Install Ruby Client Libraries (Red Hat Enterprise
Linux 5)
The Ruby client development libraries for Red Hat Enterprise Linux 5 are available via the Red
Hat Customer Portal.

1. Subscribe your system to the Red Hat MRG Messaging v.2 (for RHEL 5 Server)
channel.

2. Install the Ruby client development libraries using the yum command:

yum install ruby-qpid-qmf ruby-saslwrapper

3.5.4. Install Ruby Client Libraries (Red Hat Enterprise
Linux 6)
The Ruby client development libraries are available via the Red Hat Customer Portal.

The ruby-qpid-qmf package is in the main channel; the ruby-saslwrapper package is in the
Optional child channel.

To install the Ruby client development libraries:

1. Subscribe your system to one of the following channels:
Red Hat Enterprise Linux Server 6

Red Hat Enterprise Linux Client 6

Chapter 3. Getting Started

31

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10292-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Ruby+Messaging+Development&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=9936-319344+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Ruby+Client+Libraries&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://access.redhat.com
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=9937-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Install+Ruby+Client+Libraries+%28Red+Hat+Enterprise+Linux+5%29&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://access.redhat.com

Report a bug

Red Hat Enterprise Linux Workstation 6

2. With root privileges run the command:

yum install ruby-qpid-qmf

3. Subscribe your system one of the following channels:
Red Hat Enterprise Linux Optional Server v 6

Red Hat Enterprise Linux Optional Client 6

Red Hat Enterprise Linux Optional Workstation 6

4. With root privileges run the command:

yum install ruby-saslwrapper

3.6. Hello World

3.6.1. Red Hat Enterprise Messaging "Hello World"
Here is the "Hello World" example, showing how to send and receive a message with Red Hat
Enterprise Messaging using the Qpid Messaging API.

Python

import sys
from qpid.messaging import *

connection = Connection("localhost:5672")

try:
 connection.open()
 session = connection.session()

 sender = session.sender("amq.topic")
 receiver = session.receiver("amq.topic")

 message = Message("Hello World!")
 sender.send(message)

 fetchedmessage = receiver.fetch(timeout=1)
 print fetchedmessage.content
 session.acknowledge()

except MessagingError,m:
 print m

connection.close()

C#/.NET

Red Hat Enterprise MRG 2 Messaging Programming Reference

32

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=9938-319344+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Install+Ruby+Client+Libraries+%28Red+Hat+Enterprise+Linux+6%29&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

using System;
using Org.Apache.Qpid.Messaging;

namespace Org.Apache.Qpid.Messaging {
 class Program {
 static void Main(string[] args) {
 String broker = args.Length > 0 ? args[0] : "localhost:5672";
 String address = args.Length > 1 ? args[1] : "amq.topic";

 Connection connection = null;
 try {
 connection = new Connection(broker);
 connection.Open();
 Session session = connection.CreateSession();

 Receiver receiver = session.CreateReceiver(address);
 Sender sender = session.CreateSender(address);

 sender.Send(new Message("Hello world!"));

 Message message = new Message();
 message = receiver.Fetch(DurationConstants.SECOND * 1);
 Console.WriteLine("{0}", message.GetContent());
 session.Acknowledge();

 connection.Close();
 } catch (Exception e) {
 Console.WriteLine("Exception {0}.", e);
 if (connection != null)
 connection.Close();
 }
 }
 }
}

C++

Chapter 3. Getting Started

33

Report a bug

3.6.2. "Hello World" Walk-through
The Qpid Messaging client development libraries contain the functions we need to
communicate with the messaging broker and create and manage messages, so our first task is
to import them to our program:

#include <qpid/messaging/Connection.h>
#include <qpid/messaging/Message.h>
#include <qpid/messaging/Receiver.h>
#include <qpid/messaging/Sender.h>
#include <qpid/messaging/Session.h>

#include <iostream>

using namespace qpid::messaging;

int main(int argc, char** argv) {
 std::string broker = argc > 1 ? argv[1] : "localhost:5672";
 std::string address = argc > 2 ? argv[2] : "amq.topic";
 Connection connection(broker);
 try {
 connection.open();
 Session session = connection.createSession();

 Receiver receiver = session.createReceiver(address);
 Sender sender = session.createSender(address);

 sender.send(Message("Hello world!"));

 Message message = receiver.fetch(Duration::SECOND * 1);
 std::cout << message.getContent() << std::endl;
 session.acknowledge();

 connection.close();
 return 0;
 } catch(const std::exception& error) {
 std::cerr << error.what() << std::endl;
 connection.close();
 return 1;
 }
}

Python

from qpid.messaging import *

C++

#include <qpid/messaging/Connection.h>
#include <qpid/messaging/Message.h>
#include <qpid/messaging/Receiver.h>
#include <qpid/messaging/Sender.h>
#include <qpid/messaging/Session.h>

using namespace qpid::messaging;

C#/.NET

Red Hat Enterprise MRG 2 Messaging Programming Reference

34

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=9939-374423+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Red+Hat+Enterprise+Messaging+%22Hello+World%22&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

To communicate with a message broker we need a connection. We get one by creating an
instance of a Connection object. The Connection object constructor takes the url of the broker
as its parameter:

When you connect to a remote server that requires authenticat ion you can provide a
connection url in the form username/password@serverurl:port. If you try this with a remote
server, remember to open the firewall on the message broker to allow incoming connections
for the broker port.

Now that we have a Connection instance configured for our broker, the next step is to open
the connection. The Connection object has an open method, which opens a configured
connection.

Opening the connection might fail, if, for example, the message broker is off-line, so we will
wrap it in a try:except block, and catch any exception.

Remember that Python uses indentation, so be careful with your spacing:

Now that we have an open connection to the server, we need to create a session. A session is
a scoped conversation between our applicat ion and the server. The server uses the scope of
the session to enforce exclusive access and session-scoped lifet imes of queues.

using Org.Apache.Qpid.Messaging;

namespace Org.Apache.Qpid.Messaging {

Python

connection = Connection("localhost:5672")

C++

Connection connection(broker);

C#/.NET

Connection connection = null;
connection = new Connection(broker);

Python

try:
 connection.open()

C++

try {
 connection.open();

C#/.NET

connection.Open();

Chapter 3. Getting Started

35

http://qpid.apache.org/apis/0.14/python/html/index.html

The Connection object has a session method that returns a Session object, so we get a
session from the connection that we created previously:

The Session object has sender and receiver methods, which take a target or source address
as a parameter, and return a Sender and a Receiver object, respectively. These are the objects
that we need to send and receive messages, so we will create them by calling the respective
methods of our session. We will use the amq.topic exchange for this demo. This is a pre-
configured exchange on the broker, so we don't need to create it , and we can rely on its
presence:

A sender can be thought of as a router. It routes messages from our applicat ion to the broker.
The parameter we pass to the sender's constructor is the destination on the broker that our
messages will be routed to. In this case, our sender will route messages to the amq.topic
exchange on the broker. Because our routing target is an exchange, it will be routed further
from there by the broker.

A receiver can be thought of as a subscriber. When we create a receiver, the parameter we
pass to the constructor is resolved to an object on the server. If the object is a queue, then
our receiver is subscribed to that queue. If the object is an exchange, as it is in this case, then
a queue is created in the background and subscribed to the exchange for us. We will look in
more detail at this later. For now, suffice it to say that our sender will send a message to the
amq.topic exchange, and our receiver will receive it in a queue.

Now that we have a sender and a receiver, it 's t ime to create a message to send. The Message
object takes as a parameter to its constructor a string that becomes the message.content:

Python

session = connection.session()

C++

Session session = connection.createSession();

C#/.NET

Session session = connection.CreateSession();

Python

sender = session.sender("amq.topic")
 receiver = session.receiver("amq.topic")

C++

Receiver receiver = session.createReceiver(address);
 Sender sender = session.createSender(address);

C#/.NET

Receiver receiver = session.CreateReceiver(address);
Sender sender = session.CreateSender(address);

Python

Red Hat Enterprise MRG 2 Messaging Programming Reference

36

http://qpid.apache.org/apis/0.14/python/html/qpid.messaging.endpoints.Session-class.html
http://qpid.apache.org/apis/0.14/python/html/qpid.messaging.endpoints.Session-class.html#sender
http://qpid.apache.org/apis/0.14/python/html/qpid.messaging.endpoints.Receiver-class.html
http://qpid.apache.org/apis/0.14/python/html/qpid.messaging.endpoints.Sender-class.html
http://qpid.apache.org/apis/0.14/python/html/qpid.messaging.endpoints.Receiver-class.html
http://qpid.apache.org/apis/0.14/python/html/qpid.messaging.message.Message-class.html

The Message object constructor sets the correct content-type when you set the
message.content through the constructor. However, if you set it after creating the Message
object by assigning a value to the message.content property, then you also need to set the
message.content_type property appropriately.

We can now use the send method of our sender to send the message to the broker:

The message is sent to the amq.topic exchange on the message broker.

When we created our receiver, in the background the broker created a private temporary
queue and subscribed it to the amq.topic exchange for us. The message is now wait ing in that
queue.

The next step is to retrieve the message from the broker using the fetch method of our
receiver:

The timeout parameter tells fetch how long to wait for a message. If we do not set a t imeout
the receiver will wait indefinitely for a message to appear on the queue. If we set the t imeout
to 0, the receiver will check the queue and return immediately if nothing is there. We set it to
t imeout in 1 second to ensure ample t ime for our message to be routed and appear in the
queue.

We should now have a message, so we will print it out. Fetch returns a Message object, so we
will print its content property:

message = Message("Hello World!")

Python

sender.send(message)

C++

sender.send(Message("Hello world!"));

C#/.NET

sender.Send(new Message("Hello world!"));

Python

fetchedmessage = receiver.fetch(timeout=1)

C++

Message message = receiver.fetch(Duration::SECOND * 1);

C#/.NET

Message message = new Message();
message = receiver.Fetch(DurationConstants.SECOND * 1);

Python

Chapter 4. Beyond "Hello World"

37

http://qpid.apache.org/apis/0.14/python/html/index.html
http://qpid.apache.org/apis/0.14/python/html/qpid.messaging.endpoints.Receiver-class.html#fetch

To finish the transaction, acknowledge receipt of the message, which allows the message
broker to clear it from the queue (dequeue the message):

And finally, catch any exceptions and print something sensible to the console if they occur, and
close our connection to the message broker:

To run the program, save the file as helloworld.py, and then run it using the command python

 print fetchedmessage.content

C++

std::cout << message.getContent() << std::endl;

C#/.NET

Console.WriteLine("{0}", message.GetContent());

Python

session.acknowledge()

C++

session.acknowledge();

C#/.NET

session.Acknowledge();

Python

except MessagingError,m:
 print m

connection.close()

C++

} catch(const std::exception& error) {
 std::cerr << error.what() << std::endl;
 connection.close();
 return 1;
}

C#/.NET

} catch (Exception e) {
 Console.WriteLine("Exception {0}.", e);
 if (connection != null)
 connection.Close();
}

Red Hat Enterprise MRG 2 Messaging Programming Reference

38

Report a bug

helloworld.py. If the message broker is running on your local machine, you should see the
words: "Hello World!" printed on your programlist ing.

Chapter 4. Beyond "Hello World"

39

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8094-374425+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=%22Hello+World%22+Walk-through&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Chapter 4. Beyond "Hello
World"
4.1. Subscriptions
In the "Hello World" example, we sent a message to a topic exchange. AMQP messaging uses
exchanges to provide flexible decoupled routing between message senders and message
producers. Message consumers can subscribe to exchanges by creating a queue and binding it
to the exchange. Exchanges and bindings are covered in more depth in their own sections. Here
we will touch briefly on the topic exchange specifically, and learn something about the
difference between exchanges and queues, as we learn how a message consumer subscribes
to an exchange by binding a queue to it .

An exchange differs from a queue in a number of ways. One significant difference is that a
queue will queue messages, and can store them, whereas an exchange will distribute them to
queues, but has no local storage of its own. Message consumers are decoupled from the
message producers by the message broker. Queues provide a mechanism for buffering
messages between the two, to allow them to produce and consume data at different rates. A
message consumer does not need to be connected at the point in t ime that a message is
published to a queue to receive the message. The message remains in the queue until it is
removed.

Exchanges, on the other hand, are a mechanism for routing messages to different queues. If a
message is sent to an exchange and there are no queues bound to that exchange, then the
message is lost, as there is no-one is listening and there is nowhere to store the message.
Queues are subscript ions, and indicate to the broker that "I (an application) am interested in
these messages", in the case of a queue created by a consumer, or "I want these messages to
be here for interested applications that are coming", in the case of a queue created by a
producer. To subscribe to messages of interest, an consumer applicat ion creates a queue and
binds it to an exchange, or connects to an exist ing queue (subscribe). To provide messages
that are of interest to applicat ions, an applicat ion creates a queue and binds it to an exchange
(publish). Consuming applicat ions can then use that queue.

In our "Hello World" example program we created a receiver listening to the amq.topic
exchange. In the background this creates a queue and subscribes it to the amq.topic
exchange. Our Hello World program sender publishes to the amq.topic exchange. The
amq.topic exchange is a good one to use for the demo. A topic exchange allows queues to be
subscribed (to bind to the exchange) with a binding key that acts as a filter on the subject of
messages sent to the exchange. Since we bind to the exchange with no binding key, we signal
that we're interested in all messages coming through the exchange.

When our sender sends its message to the amq.topic exchange, the message is delivered to
the subscript ion queue for our receiver. Our receiver then calls fetch() to retrieve the
message from its subscript ion queue.

We will make two modificat ions to our Hello World program to demonstrate this.

First of all, we will send our message to the amq.topic exchange and after we send the
message, register our receiver with the exchange.

We need to change the order of these operations:

Python

Red Hat Enterprise MRG 2 Messaging Programming Reference

40

At the moment we register a receiver with the exchange before sending the message. Let 's
instead send the message, then register the receiver:

When you run the modified Hello World program, you will not see the "Hello World!" message
this t ime. What happened? The sender published the message to the amq.topic exchange.

sender = session.sender("amq.topic")
receiver = session.receiver("amq.topic")

message = Message("Hello World!")
sender.send(message)

C++

Session session = connection.createSession();

Receiver receiver = session.createReceiver(address);
Sender sender = session.createSender(address);

sender.send(Message("Hello world!"));

C#/.NET

Session session = connection.CreateSession();

Receiver receiver = session.CreateReceiver(address);
Sender sender = session.CreateSender(address);

sender.Send(new Message("Hello world!"));

Python

sender = session.sender("amq.topic")

message = Message("Hello World!")
sender.send(message)

receiver = session.receiver("amq.topic")

C++

Session session = connection.createSession();

Sender sender = session.createSender(address);
sender.send(Message("Hello world!"));

Receiver receiver = session.createReceiver(address);

C#/.NET

Session session = connection.CreateSession();

Sender sender = session.CreateSender(address);
sender.Send(new Message("Hello world!"));

Receiver receiver = session.CreateReceiver(address);

Chapter 4. Beyond "Hello World"

41

The exchange then delivered the message to all the subscribed queues... which was none.
When our receiver subscribes to the exchange it 's too late to receive the message. In the
original version of the program the receiver subscribes to the exchange before the message is
sent, so it receives a copy of the message in its subscript ion queue.

Let's now examine the subscript ion queues that are created when we create the sender and
receiver. We'll do that using the qpid-config command. Restart the broker to clear all the
queues (all non-durable queues are destroyed when the broker restarts). Then run the
command:

qpid-config queues

You see the list of queues on the broker.

Now modify the Hello World program back to its original form, where the receiver is created
(subscribed to the exchange) before the message is sent. In order to see what happens, we'll
pause the applicat ion between creating the exchange subscript ions and sending the message.
We'll do that in Python by asking the user to press Enter, and using the raw_input method to
grab some keyboard input.

Now we run the program, and while it is paused, we use qpid-config queues to examine the
queues on the broker.

Run the program, and while it is paused, issue the command:

qpid-config queues

You will see an exclusive queue with a unique random ID. This is the queue created and bound to
the amq.topic exchange for us,to allow our receiver to receive messages from the exchange.
You'll also see a number of other queues with the same ID number at the end of them. These
are the queues that the qpid-config ut ility uses to query the message broker and receive the
queue list you run the command. If you run the command again, you'll see that our receiver
queue remains the same, and the other queues have a new ID - each t ime you run a qpid-
config command it creates it own queues to receive a response from the server. You won't be
able to see that those queues aren't there when you're not running qpid-config, because you
need to run qpid-config to see the queues, but you can take my word for it .

Since the receiver's queue is bound to the exchange (subscribed) when the sender sends its
message to the exchange, the "Hello World!" message is delivered to the subscript ion queue
by the exchange, and is available for the receiver to fetch when it is ready.

The queue created for the receiver is an exclusive queue, which means that only one session
can access it at a t ime.

Version 2.2 and below
To see the queue-exchange bindings, run:

Python

sender = session.sender("amq.topic")
receiver = session.receiver("amq.topic")

print "Press Enter to continue"
x= raw_input()

message = Message("Hello World!")
sender.send(message)

Red Hat Enterprise MRG 2 Messaging Programming Reference

42

Report a bug

qpid-config queues -b

The -b switch displays bindings. You'll see that the two dynamically created queues are
bound to the amq.topic exchange.

Version 2.3 and above
To see the queue-exchange bindings, run:

qpid-config queues -r

The -r switch displays bindings. You'll see that the two dynamically created queues are
bound to the amq.topic exchange.

When the applicat ion wakes up and completes execution, the call to connection.close() ends
the session, and the two exclusive queues on the broker are deleted. You can run qpid-config
queues again to verify that.

Another experiment you can try: create one receiver before the message is sent, and another
receiver after the message is sent. We would expect the receiver created before the
message is sent to receive the message, and the receiver created after the message is sent
to not receive it .

Our simple applicat ion uses a dynamically created queue to interact with the amq.topic
exchange. This queue is private (randomly named and exclusive), and deleted when the
consumer disconnects, so it is not suitable for publishing. In order to make messages available
to consumers who may or may not be connected to the exchange when the message is sent, a
message-producing applicat ion needs to create a publicly-accessible queue (publishing).
Consuming applicat ions can then subscribe to this published queue and receive messages in a
decoupled fashion.

Of course, if it 's not important that your messages are buffered somewhere when no-one is
listening, you can use the "Hello World" pattern of simply publishing to an exchange, and leave
it to the consumers to create their own queues by subscribing to the exchange. AMQP
messaging gives a lot of flexibility in messaging system design.

4.2. Publishing
As a message producer there are a number of different publishing strategies that you can use
with AMQP messaging.

You can publish messages to an exchange, and message consuming applicat ions can subscribe
to the exchange, creating their own queues. There are a number of different exchange types
that you can use, depending on how you want to distribute the information your applicat ion
produces. One thing to note when publishing to an exchange is that if your message falls in the
woods while no-one is listening, it doesn't make a sound: if no consumers are subscribed to the
exchange when you send a message to it , the message disappears into the ether. It is not
stored. If you need your messages to be stored whether consumers are listening or not, then
you want to publish to a queue.

You can publish messages to a queue by creating a queue and subscribing it to an exchange.
You then send messages to that exchange routed to that queue, and consuming applicat ions
can connect to your published queue and collect messages. This method of publishing is the
one to use when your messages need to be stored on the broker whether someone is listening
or not. Using this method of publishing, you can st ill allow consumers to create their own

Chapter 4. Beyond "Hello World"

43

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10134-363555+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Subscriptions&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

subscript ions to the exchange, or you can publish exclusively to your queue.

To publish to an exclusive queue, you would publish to a Direct Exchange, and bind your
publishing queue to the exchange with an exclusive binding key. This means that you can route
messages direct ly to your queue, and no-one else can bind a queue to the exchange that can
receive those messages.

To publish to a queue and also allow consumers to create their own queues that receive your
messages, you could publish to a Fanout or Topic exchange, and create and bind a queue with
the appropriate binding key to receive your messages. Consumers can then subscribe to your
queue, and can also create their own queues and bind them to the exchange.

4.3. AMQP Exchange Types
There are five AMQP Exchange types. The different exchanges provide different means of
routing messages so that consumers can subscribe to the part icular flow of information that is
of interest to them.

The AMQP Exchange types are:

Direct
A Direct Exchange allows a consumer to bind a queue to it with a key. When a message is
received by a direct-type exchange, the message is routed to any queues whose binding
key matches the subject of the message. The Direct Exchange also supports exclusive
bindings, which allow a queue to monopolise messages sent to an exchange, and
implement a simple direct-to-queue model.

Topic
A Topic Exchange allows a consumer to bind a queue to it with a key that specifies wildcard
matching. The wildcard is then matched against the subject of messages sent to the
exchange. This allows you to implement message filtering patterns using a topic exchange
and various queues with different binding keys.

4.4. Pre-configured Exchanges
Out of the box, the Red Hat Enterprise Messaging broker has five pre-configured exchanges
that you can use for messaging. These exchanges are all configured as durable, so they are
available whenever the broker is started:

Default exchange
A nameless direct exchange. All queues are bound to this exchange by default , allowing
them to be accessed by queue name.

amq.direct

The pre-configured named direct exchange.

amq.fanout

The pre-configured fanout exchange.

Red Hat Enterprise MRG 2 Messaging Programming Reference

44

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10135-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Publishing&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8037-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=AMQP+Exchange+Types&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Report a bug

amq.match

The pre-configured headers exchange.

amq.topic

The pre-configured topic exchange.

4.5. The Default Exchange

4.5.1. Default Exchange
The Default Exchange is a pre-configured nameless direct exchange.

All queues are bound to the Default Exchange by default . This means that a queue can be
targeted by using the queue name as a target address, since a queue name unqualified with an
exchange resolves to the nameless exchange.

4.5.2. Publish to a Queue using the Default Exchange
All queues automatically bind to the default exchange using the queue name as the binding
key. So all you need to do to publish to a queue bound to the default exchange is to declare a
queue. The binding to the Default Exchange is created automatically. Since the Default
Exchange is a direct exchange, and is nameless, sending a message to the queue name is
sufficient for it to arrive in your queue.

To create a queue named "quick-publish" bound to the Default Exchange using qpid-config:

qpid-config add queue quick-publish

In an applicat ion, queues can be created as a side-effect of creating a sender object. If the
address contains the parameter {create: always} then the queue will be created if it does
not already exist. In addit ion to always, the create command can also take the arguments
sender and receiver, to indicate that the queue should be created only when a sender
connects to the address, or only when a receiver connects to the address.

Here is the creation of the "quick-publish" example queue:

4.5.3. Subscribe to the Default Exchange

Python

sender = session.sender("quick-publish; {create: always}")

C++

Sender sender = session.createSender("quick-publish; {create: always}")

Chapter 4. Beyond "Hello World"

45

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10230-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Pre-configured+Exchanges&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8042-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Default+Exchange&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10228-188065+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Publish+to+a+Queue+using+the+Default+Exchange&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

To subscribe to the Default Exchange, create a receiver and pass the name of the queue to
the constructor. For example, to subscribe to the queue "quick-publish", using the Python
API:

This receiver can now be used to retrieve messages from the quick-publish queue.

To obtain a browse-only view that does not remove messages from the queue:

If you want to create and subscribe a queue that does not yet exist, for example for your
applicat ion to request its own copies of messages, use the create parameter:

If the queue "my-own-copies-please" already exists, then your receiver will connect to that
queue. If the queue does not exist, then it will be created (all of this assumes sufficient
privileges, of course).

One thing to bear in mind is that if an exchange named "my-own-copies-please" exists, your
receiver will silently connect to that in preference to creating a queue. This is not what you
intended, and will have unpredictable results. To avoid this, you can use the assert parameter,
like this:

C++

Receiver receiver = session.createReceiver('quick-publish');

Python

receiver = session.receiver('quick-publish')

C++

Receiver receiver = session.createReceiver('quick-publish; {mode: browse}');

Python

receiver = session.receiver('quick-publish; {mode: browse}')

C++

Receiver receiver = session.createReceiver("my-own-copies-please; {create:
always, node: {type: 'queue'}}");

Python

receiver = session.receiver("my-own-copies-please; {create: always, node:
{type: 'queue'}}")

C++

try {
 Receiver receiver = session.createReceiver("my-own-copies-please; {create:
always, assert: always, node: {type: 'queue'}}");
} catch(const std::exception& error) {
 std::cerr << error.what() << std::endl;
}

Red Hat Enterprise MRG 2 Messaging Programming Reference

46

Report a bug

Now if "my-own-copies-please" already exists and is an exchange, the receiver constructor will
raise an exception: "expected queue, got topic".

Note that although it is an instance of a Direct Exchange, the Default Exchange does not allow
mult iple bindings using the same key. Each queue is bound to the Default Exchange uniquely.
This means that you can only connect to a queue to get messages sent to it ; you cannot bind
another queue to the exchange in parallel to receive copies of the messages, as you can with
other Direct Exchanges.

4.6. Direct Exchange

4.6.1. Direct Exchange
A Direct Exchange routes messages to queues where there is an exact match between the
binding key of the queue and the subject of the message (routing key).

Note as you look at this picture that multiple queues can bind to a Direct Exchange with the
same binding key. In the diagram we see one message going to one queue, but if other queues
on that exchange have the same binding key, they will also receive the message.

Figure 4.1. Direct Exchange

A Direct Exchange is a specializat ion of the Topic Exchange. Effect ively, a Direct Exchange is a

Python

try:
 receiver = session.receiver("my-own-copies-please; {create: always, assert:
always, node: {type: 'queue'}}")
except MessagingError m:
 print m

Chapter 4. Beyond "Hello World"

47

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10227-188071+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Subscribe+to+the+Default+Exchange&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Report a bug

Topic Exchange where there are no wildcards used, or allowed, on the binding key.

The Direct Exchange also supports exclusive binding, so that a queue can guarantee that it is
the only recipient of messages sent to the Direct Exchange with the routing key used to
exclusively bind the queue to the exchange.

4.6.2. Create a Direct Exchange using qpid-config
The command qpid-config add exchange direct exchange name creates a new direct
exchange.

The following example qpid-config command creates a new direct exchange called
engineering:

qpid-config add exchange direct engineering

4.6.3. Create a Direct Exchange from an application
You can creating a Direct Exchange in an applicat ion as a side effect of creating a sender or a
receiver. For example, the following example creates a direct exchange called engineering:

In the case where an exchange named engineering already exists, the sender will not try to
create a new one, but will connect to the exist ing one. You need to be careful, however,
because if a queue with the name engineering already exists, then your sender will silently
connect to that queue.

To ensure that your sender will connect to a new or exist ing exchange called engineering, you
can use assert, as in this example:

When you use assert: always, node: {type: topic}; if engineering exists and is a queue,
rather than an exchange, the sender constructor will raise an exception: "expected topic, got
queue".

Note that while you can use assert to verify that it is an exchange and not a queue, you cannot
verify what type of exchange it is.

Python

sender = session.sender('engineering;{create: always, node:{type:topic, x-
declare:{type:direct}}}')

Python

try:
 sender = session.sender('engineering;{create: always, node:{type:topic, x-
declare:{type:direct}}, assert: always}')
except MessagingError, m:
 print m

Red Hat Enterprise MRG 2 Messaging Programming Reference

48

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8030-241926+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Direct+Exchange&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10224-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Create+a+Direct+Exchange+using+qpid-config&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10225-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Create+a+Direct+Exchange+from+an+application&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

4.6.4. Publish to a Direct Exchange
To publish to a direct exchange you have two options.

Create a sender that targets a specific endpoint

The first is to create a sender that routes messages direct ly to the endpoint that you wish to
publish to. Remember that a Direct Exchange requires an exact match, so you are sending to a
specific dest ination. At the same t ime, bear in mind that mult iple queues can bind to the
exchange to receive messages routed to the same destination. So it is a specific endpoint
that may have mult iple consumers.

This example creates a sender that will route messages to the reports endpoint on the
finance exchange.

Any messages now sent using sender will go to queues that have bound to the finance direct
exchange using the key reports; with one caveat.

Let 's look at our second option for publishing to a Direct Exchange, as it will help to explain this
caveat.

Create a sender that targets the exchange

The second option is to create a sender that routes messages to the exchange, and use the
message subject to control the routing to the specific endpoint. This way you can dynamically
decide where messages will go, for example based on the names of keys that are provided at
run-t ime, perhaps in the body of other messages.

This example demonstrates how this is done:

With a sender that targets the exchange, we specify where our message will go in the
exchange by sett ing the subject. You can target different endpoints on that exchange by
changing the subject before sending the message. For example, to send copies of the same
message to finance/reports and finance/records:

Python

sender = session.sender('finance/reports')
sender.send('Message to all consumers bound to finance with key reports')

Python

sender = session.sender('finance; {assert: always, node: {type: topic}}')
msg = Message('Message to all consumers bound to finance with key reports')
msg.subject = 'reports'
sender.send(msg)

Python

sender = session.sender('finance; {assert: always, node: {type: topic}}')
msg = Message('Message for reports and records')

msg.subject = 'reports'
sender.send(msg)

msg.subject = 'records'
sender.send(msg)

Chapter 4. Beyond "Hello World"

49

Report a bug

{assert: always, node: {type: topic}} is used to ensure that we don't inadvertently
connect to a queue with the name finance bound to the default exchange. Queues and
exchanges have separate namespaces, but remember that the default exchange is nameless.

A Caveat

As you can observe in the second case, sett ing the subject influences where the message is
routed. If you use the first method — the sender with the subject in its address — you must
be careful not to set the message subject inadvertently. The sender will write the correct
subject into the message when you send it if the message subject is blank, but it will not
overwrite any message subject that you provide. The first method — the sender with a subject
in its address — provides a "default dest ination" for all messages it sends that do not have a
message subject set. You can target other endpoints on the exchange by explicit ly sett ing a
subject before sending the message - in which case they go to the exchange for further
routing based on your custom subject. Just be aware that sett ing the message subject
determines its routing.

4.6.5. Subscribe to a Direct Exchange
There are three different patterns for subscribing to a Direct Exchange: a copy of messages, a
shared queue, and an exclusive binding.

Copy of Messages

A copy of messages is where each consumer gets their own copy of every message. This
arrangement makes sense, for example, when a service is logging act ivity based on messages,
or when mult iple consumers want notificat ion of events.

Shared Queue

A shared queue is where mult iple consumers connect to the same queue and take messages
from the queue in a round-robin fashion. If consumer A and consumer B are accessing the same
shared queue, then consumer A will not see the messages that consumer B takes from the
queue. This arrangement makes sense, for example, in a scenario where worker nodes are
dispatching jobs from a work queue. You want one node only to see each message.

These two patterns are not mutually exclusive - for example, three worker nodes could share a
queue in round-robin fashion while another process gets its own copy of the messages in the
queue to create an archive.

The two patterns can also be combined, for example: three worker nodes could share one
queue, and two archiver nodes could share a second queue.

Exclusive Binding

The third pattern, exclusive binding, is where a consumer mandates that only consumer may
have access to messages routed to an endpoint.

Subscribing to the Default Exchange using a Copy of Messages

This is the most straight-forward method to implement.

Subscribing to a Direct Exchange using a Shared Queue

To subscribe to a shared queue, you need to subscribe to a queue, rather than to the
exchange. create a queue and bind it to the default exchange using a key. We can do that in
one move using x-bindings. For example:

To subscribe to a shared queue, create a receiver and pass the name of the queue to the

Red Hat Enterprise MRG 2 Messaging Programming Reference

50

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10226-241931+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Publish+to+a+Direct+Exchange&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

constructor. For example, to obtain access to the queue "reports" on the "finance" direct
exchange:

This receiver can now be used to retrieve messages from the quick-publish queue.

To obtain a browse-only view that does not remove messages from the queue:

We have created a queue named "my-own-copy" and bound it to the default exchange with the
key "quick-publish".

4.6.6. Exclusive Bindings for Direct Exchanges
Declaring an exclusive binding on a direct exchange ensures that a maximum of one consumer
is bound to the exchange using this key at any t ime. When a new consumer is subscribed to
the exchange using this key, the previous consumer's binding is dropped synchronously. This
allows messaging routing to be switched between consumers with guaranteed message
atomicity, with no possibility of dropped messages or duplicate delivery while the composite
bind/unbind operation is taking place.

The exchange-bind argument qpid.exclusive-binding is used to declare an exclusive binding.

4.7. Fanout Exchange

Python

receiver = session.receiver('finance/reports')

Python

receiver = session.receiver('quick-publish; {mode: browse}')

Python

receiver = session.receiver("my-own-copy; {create: always, node:{type:queue,
x-bindings: [{exchange: '', queue: 'my-own-copy', key: 'quick-publish'}]}}")

C++

 FieldTable args;
 args.setInt("qpid.exclusive-binding",1);

 //the following will cause the only binding from amq.direct with 'my-key'
 //to be the one to 'my-queue'; if there were any previous bindings for that
 //key they will be removed. This is atomic w.r.t message routing through
the
 //exchange.
 session.exchangeBind(arg::exchange="amq.direct", arg::queue="my-queue",
 arg::bindingKey="my-key", arg::arguments=args);

Chapter 4. Beyond "Hello World"

51

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10219-249320+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Subscribe+to+a+Direct+Exchange&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8092-188010+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Exclusive+Bindings+for+Direct+Exchanges&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Report a bug

4.7.1. The pre-configured Fanout Exchange
Red Hat Enterprise Messaging ships with a pre-configured Fanout exchange named amq.fanout.

4.7.2. Fanout Exchange
A Fanout Exchange routes all messages to all queues bound to the exchange.

Figure 4.2. Fanout Exchange

A Fanout exchange is a specializat ion of the Topic Exchange. Effect ively, a Fanout Exchange is a
Topic Exchange where all queues bound to the exchange use a wildcard of * as their binding
key.

4.7.3. Create a Fanout Exchange using qpid-config
The following example creates a new fanout exchange using qpid-config:

qpid-config add exchange fanout my-fanout-exchange

To make the exchange durable (persistent between restarts of the broker), use the --
durable option:

qpid-config add exchange fanout my-fanout-exchange --durable

The qpid-config exchanges command lists the exchanges on the broker.

4.7.4. Create a Fanout Exchange from an application

Red Hat Enterprise MRG 2 Messaging Programming Reference

52

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10214-188074+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=The+pre-configured+Fanout+Exchange&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8085-241976+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Fanout+Exchange&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10217-188079+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Create+a+Fanout+Exchange+using+qpid-config&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

A fanout exchange can be declared in an applicat ion by using the following parameters in the
address of a sender or receiver:

create: always

node: {type: topic, x-declare: {exchange: exchange-name, type: fanout}}

The following example presents the address to create a new fanout exchange named
myfanout.

4.7.5. Publish to Multiple Queues using the Fanout
Exchange
All queues bound to a fanout exchange receive a copy of all messages sent to the exchange;
so to publish to all consumers on a fanout exchange, send a message to the exchange.

4.7.6. Subscribe to a Fanout Exchange
When subscribing to a fanout exchange you have two options:

1. Subscribe to the exchange using an ephemeral subscript ion. This creates and binds a
temporary private queue that is destroyed when your applicat ion disconnects. This
approach makes sense when you do not need to share responsibility for the messages
between mult iple consumers, and you do not care about messages that are sent when
your applicat ion is not running or is disconnected.

2. Subscribe to a queue that is bound to the exchange. This allows messages to be
buffered in the queue when your applicat ion is disconnected, and and allows several
consumers to share responsibility for the messages in the queue.

Private, ephemeral subscription

To implement the private, ephemeral subscript ion, simply create a receiver using the name of
the fanout exchange as the receiver's address. For example:

Python

tx = ssn.sender("myfanout; {create: always, node: {type: topic, x-declare:
{exchange: myfanout, type: fanout}}}")

Python

import sys
from qpid.messaging import *
con = Connection("localhost:5672")
con.open()
try:
 ssn = con.session()
 tx = ssn.sender("amq.fanout")
 tx.send("Hello to all consumers bound to the amq.fanout exchange")
finally:
 con.close()

Python

Chapter 4. Beyond "Hello World"

53

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10211-188091+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Create+a+Fanout+Exchange+from+an+application&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10215-188103+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Publish+to+Multiple+Queues+using+the+Fanout+Exchange&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Shareable subscription

To implement a shareable subscript ion that persists across consumer applicat ion restarts,
create a queue, and subscribe to that queue.

You can create and bind the queue using qpid-config:

qpid-config add queue shared-q
qpid-config bind amq.fanout shared-q

Note: To make the queue persistent across broker restarts, use the --durable option.

Use the qpid-config command to view the exchange bindings after issuing these commands.
On MRG Messaging 2.2 and below use the command qpid-config exchanges -b. On MRG
Messaging 2.3 and above use the command qpid-config exchanges -r.

Once you have created and bound the queue, in your applicat ion create a receiver that listens
to this queue:

You could also create and bind the queue in the applicat ion code, rather than using qpid-
config:

4.8. Topic Exchange

4.8.1. The pre-configured Topic Exchange
Red Hat Enterprise Messaging ships with a pre-configured durable topic exchange named
amq.topic.

4.8.2. Topic Exchange
A Topic Exchange routes messages based on the routing key (subject) of the message and the
binding key of the subscript ion, just as a direct exchange does. The difference is that a topic
exchange supports the use of wildcards in binding keys, allowing you to implement flexible
routing schemas.

rx = receiver("amq.fanout")

Python

rx = receiver("shared-q")

Python

rx = receiver("shared-q;{create: always, link: {x-bindings: [{exchange:
'amq.fanout', queue: 'shared-q'}]}}")

Red Hat Enterprise MRG 2 Messaging Programming Reference

54

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10220-363551+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Subscribe+to+a+Fanout+Exchange&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10216-188199+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=The+pre-configured+Topic+Exchange&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Report a bug

Figure 4.3. Topic Exchange

Wildcard matching and Topic Exchanges

In the binding key, # matches any number of period-separated terms, and * matches a single
term.

So a binding key of #.news will match messages with subjects such as usa.news and
germany.europe.news, while a binding key of *.news will match messages with the subject
usa.news, but not germany.europe.news.

4.8.3. Create a Topic Exchange using qpid-config
The following qpid-config command creates a topic exchange called news:

qpid-config add exchange topic news

4.8.4. Create a Topic Exchange from an application
The following example creates a topic exchange called news:

4.8.5. Publish to a Topic Exchange
To publish to a topic exchange, create a sender whose address is the exchange, then set the

Python

txtopic = ssn.sender("news; {create: always, node: {type: topic}}")

Chapter 4. Beyond "Hello World"

55

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8082-369440+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Topic+Exchange&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10229-188235+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Create+a+Topic+Exchange+using+qpid-config&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10223-188237+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Create+a+Topic+Exchange+from+an+application&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

subject of the message to the routing key.

In the following example, messages are sent to the news topic exchange with routing keys that
allow geography-based subscript ions by consumers:

4.8.6. Subscribe to a Topic Exchange
To subscribe to topic exchange, create a queue and bind it to the exchange with the desired
routing key.

The following example uses qpid-config to create a queue named news and bind it to the
amq.topic exchange with a wildcard that matches everything.news, where everything is any
number of period-separated terms:

qpid-config add queue news
qpid-config bind amq.topic news "#.news"

Now you can listen to the news queue for all messages whose routing key ends with .news:

You can also do the entire operation (create, bind, and listen) in code, by using an address like
the one in the following example:

You could also create an ephemeral subscript ion for your applicat ion, if you do not care about
queuing messages when your applicat ion is disconnected or sharing responsibility for
messages. This method creates and binds a temporary private queue for your applicat ion:

Python

import sys
from qpid.messaging import *
conn = Connection("localhost:5672")
conn.open()
try:
 ssn = conn.session()
 txnews = ssn.sender("news; {create: always, node: {type: topic}}")
 msg = Message("News about Europe")
 msg.subject = "europe.news"
 txnews.send(msg)
 msg = Message("News about the US")
 msg.subject = "usa.news"
 txnews.send(msg)
finally:
 conn.close()

Python

rxnews = ssn.receiver("news")

Python

rxnews = ssn.receiver("news;{create: always, node: {type:queue}, link:{x-
bindings:[{exchange: 'amq.topic', queue: 'news', key: '#.news'}]}}")

Python

Red Hat Enterprise MRG 2 Messaging Programming Reference

56

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10906-188289+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Publish+to+a+Topic+Exchange&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Report a bug

Report a bug

Report a bug

In topic exchange binding key wildcard matching, the # symbol will match any number of period-
separated terms. The # will match exactly one term.

4.9. Headers Exchange

4.9.1. The pre-configured Headers Exchange
Red Hat Enterprise Messaging ships with a pre-configured durable headers exchange named
amq.match.

4.9.2. Headers Exchange
The Headers Exchange allows routing based on matches with propert ies in the message
header. This allows flexible routing schemas based on arbitrary domain-specific attributes of
messages.

4.9.3. Create a Headers Exchange using qpid-config
The following example qpid-config command creates a headers exchange called property-
match:

qpid-config add exchange headers property-match

4.9.4. Create a Headers Exchange from an application
The following code creates a headers exchange called headers-match:

4.9.5. Publish to a Headers Exchange
To publish to a headers exchange, pass the name of the exchange to the sender constructor,
and add the header keys and value to the message properties. For example:

rxnews = ssn.receiver("amq.topic/#.news");

Python

txheaders = ssn.sender("headers-match;{create: always, node: {type: topic, x-
declare: {exchange: headers-match, type: headers}}}")

Python

Chapter 5. Message Delivery and Acceptance

57

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10221-249322+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Subscribe+to+a+Topic+Exchange&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10209-188444+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=The+pre-configured+Headers+Exchange&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8137-188350+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Headers+Exchange&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10222-188390+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Create+a+Headers+Exchange+using+qpid-config&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10907-188451+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Create+a+Headers+Exchange+from+an+application&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Report a bug

4.9.6. Subscribe to a Headers Exchange
The following code creates a queue match-q, and subscribes it to the amq.match exchange
using a binding key that matches messages that have a header key header1 with a value of
either value1 or value2:

The x-match argument can take the values any, which matches messages with any of the key
value pairs in the binding, or all, which matches messages that have all the key value pairs
from the binding key in their header.

Note the x-bindings argument key. This argument creates a named handle for the binding,
which is visible when running qpid-config exchanges -b on MRG Messaging version 2.2 or
earlier, or the command qpid-config exchanges -r on MRG Messaging version 2.3 or later.
Without a handle, a binding cannot be deleted by name. A null key is valid, but in addit ion to
not being able to be deleted by name, when a binding is created with a null handle, any further
attempt to create a binding with a null handle on that exchange will be update the exist ing
binding rather than create a new one.

4.10. XML Exchange

4.10.1. Custom Exchange Types
AMQP Messaging supports custom exchange types. Custom exchanges allow you to
manipulate or match messages based on any criteria.

Red Hat Enterprise Messaging ships with one custom exchange type, the XML Exchange.

4.10.2. The pre-configured XML Exchange Type
Red Hat Enterprise Messaging ships with a custom XML Exchange type.

import sys
from qpid.messaging import *
conn = Connection("localhost:5672")
conn.open()
try:
 ssn = conn.session()
 txheaders = sender("amq.match")
 msg = Message("Headers Exchange message")
 msg.properties['header1'] = 'value1'
 txheaders.send(msg)
finally:
 ssn.close()

Python

rxheaders = ssn.receiver("match-q;{create: always, node: {type: queue},
link:{x-bindings:[{key: 'binding-name', exchange: 'amq.match', queue: 'match-q',
arguments:{'x-match': 'any', 'header1': 'value1', 'header1' : 'value2'}}]}}")

Red Hat Enterprise MRG 2 Messaging Programming Reference

58

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10213-188459+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Publish+to+a+Headers+Exchange&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10218-363553+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Subscribe+to+a+Headers+Exchange&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8114-188492+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Custom+Exchange+Types&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

The XML Exchange matches messages based on a XQuery applied to the headers or message
content. Messages containing XML data can be sent to this exchange and filtered based on the
message contents, as well as on the message headers.

4.10.3. Create an XML Exchange
The following example qpid-config command creates an XML exchange called myxml:

qpid-config add exchange xml myxml

The following example code demonstrates how to achieve the same in an applicat ion:

4.10.4. Subscribe to the XML Exchange
The following code subscribes to an XML exchange myxml by creating a queue xmlq and binding
it to the exchange with an XQuery.

The XQuery ./weather will match any messages whose body content has the root XML
element <weather>.

Note the use of the key argument for x-bindings. This ensures that the binding has a unique
name, allowing it to be deleted and updated by name, and ensuring that it is not accidentally
updated, as might be the case if it were anonymous in the namespace of the exchange.

The following code demonstrates using the XML exchange with a more complex XQuery:

Python

tx = ssn.sender("myxml; {create: always, node: {type: topic, x-declare:
{exchange: myxml, type: xml}}}")

Python

rxXML = ssn.receiver("myxmlq; {create:always, link: { x-bindings:
[{exchange:myxml, key:weather, arguments:{xquery:'./weather'} }]}}")

Python

Chapter 5. Message Delivery and Acceptance

59

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8106-188552+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=The+pre-configured+XML+Exchange+Type&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10908-188742+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Create+an+XML+Exchange&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

#!/usr/bin/python
import sys
from qpid.messaging import *

conn = Connection("localhost:5672")
conn.open()
try:
 ssn = conn.session()
 tx = ssn.sender("myxml/weather; {create: always, node:
{type: topic, x-declare: {exchange: myxml, type: xml}}}")

 xquerystr = 'let $w := ./weather '
 xquerystr += "return $w/station = 'Raleigh-Durham International Airport
(KRDU)' "
 xquerystr += 'and $w/temperature_f > 50 '
 xquerystr += 'and $w/temperature_f - $w/dewpoint > 5 '
 xquerystr += 'and $w/wind_speed_mph > 7 '
 xquerystr += 'and $w/wind_speed_mph < 20'

 rxaddr = 'myxmlq; {create: always, '
 rxaddr += 'link: {x-bindings: [{exchange: myxml, '
 rxaddr += 'key: weather, '
 rxaddr += 'arguments: {xquery: "' + xquerystr + '"'
 rxaddr += '}}]}}'

 rx = ssn.receiver(rxaddr)
 rx = ssn.receiver('myxmlq; {create: always, link: {x-bindings: [{exchange:
myxml, key: weather, arguments: {xquery: "./weather"}}]}}')
 print rxaddr

 msgstr = '<weather>'
 msgstr += '<station>Raleigh-Durham International Airport (KRDU)</station>'
 msgstr += '<wind_speed_mph>16</wind_speed_mph>'
 msgstr += '<temperature_f>70</temperature_f>'
 msgstr += '<dewpoint>35</dewpoint>'
 msgstr += '</weather>'

 msg = Message(msgstr)

 tx.send(msg)

 rxmsg = rx.fetch(timeout=1)
 print rxmsg

 ssn.acknowledge()

finally:
 conn.close()

Red Hat Enterprise MRG 2 Messaging Programming Reference

60

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10208-333619+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Subscribe+to+the+XML+Exchange&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Chapter 5. Message
Delivery and Acceptance
5.1. The Lifecycle of a Message

5.1.1. Message Delivery Overview
The following diagram illustrates the message delivery lifecycle.

Figure 5.1. Fanout Exchange

A message producer generates a message. A message is an object with content, a subject,
and headers. At the minimum, a message producer will produce a message with message
content.

The message producer may send the message to the broker and let the routing be taken care
of by the propert ies of the message or by the address of the sender object used to send the
message (1).

Or the message producer may set the message.subject, which acts as the routing key (2), and
then send the message to the broker (3).

Consumers subscribed to exchanges (which uses a temporary, private queue in the
background) receive messages when they are connected (4).

Messages are buffered in queues that are subscribed to exchanges (5). Consumers can
subscribe to queues and receive messages that were buffered while the consumer was
disconnected (6). These queues can also be used to share responsibility for messages

Chapter 5. Message Delivery and Acceptance

61

Report a bug

Report a bug

Report a bug

Report a bug

between consumers.

5.1.2. Message Generation
The Message object is used to generate a message.

5.1.3. Message Send over Reliable Link
When sent over a reliable link:

1. The sender passes the message to the broker.
2. The broker responds with an acknowledgement that it takes responsibility for delivery of

the message.
3. The sender deletes its local copy of the message.

In synchronous operation the thread is blocked while this acknowledgement round-trip occurs.
When sending using asynchronous operation, the acknowledgement and delet ion is performed
in the background, and sent but unacknowledged messages are buffered in the sender replay
buffer until they are acknowledged.

5.1.4. Message Send over Unreliable Link
When sent over an unreliable link:

1. The sender passes the message to the broker.
2. The sender deletes the local copy of the message.

Messages may be lost between the sender and the broker in this mode.

5.1.5. Message Distribution on the Broker
When the broker receives a message, it examines the message and the routing information
associated with it to determine how to deliver it .

Python

import sys
from qpid.messaging import *
...
msg = Message('This is the message content')
msg.content = 'Message content can be assigned like this'
msg.properties['header-key'] = 'value'

tx = ssn.sender('amq.topic')

msg.subject set by sender for routing purposes
tx.send(msg)

msg.subject = 'Messaging Routing Key can also be manually set'
beware that this will interfere with sender-object-based routing

Red Hat Enterprise MRG 2 Messaging Programming Reference

62

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8238-241982+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Message+Delivery+Overview&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10288-188778+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Message+Generation&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10284-188785+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Message+Send+over+Reliable+Link&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10286-188790+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Message+Send+over+Unreliable+Link&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Report a bug

The bindings on the exchanges that receive the message are examined, and when there is a
match between the message and a binding, the message is delivered to any queue with that
binding.

5.1.6. Message Receive over Reliable Link
When a message is received over a reliable link:

1. The broker passes the message to the receiver.

From this point a number of possibilit ies exist when the receiver is an acquiring consumer:

1. The receiver acknowledges responsibility for the message. In this case the broker
deletes the server-side copy of the message.

2. The receiver rejects the message. In this case the broker routes the message to an
alternate-exchange if one is defined for the queue, or else discards the message.

3. The receiver releases the message. In this case the broker returns the message to the
queue with a message header redelivered:true.

4. The receiver disconnects without acknowledging or reject ing the message. In this case
the broker returns the message to the queue with a message header redelivered:true.

5.1.7. Message Receive over Unreliable Link
When a message is received over an unreliable link:

1. The broker passes the message to the receiver.
2. The broker deletes the server-side copy of the message.

There is no opportunity for the receiver to reject the message, and no opportunity for the
broker to redeliver it when using an unreliable link.

5.2. Browsing and Consuming Messages

5.2.1. Message Acquisition and Acceptance
A message consumer can browse the messages in a queue, or consume them.

Browsing means that the consuming applicat ion reads the messages, but the messages
remain on the queue for other consumers. Consuming means that the consuming applicat ion
removes the message from the queue. This is also known as acquiring a message.

We will first look at the broad dist inct ion between browsing and acquiring messages, then in
Acquired and Acknowledged we'll look in more detail at the acquisit ion process, which has two
phases that we need to understand.

Browsing

The included drain program can be used in either browse or acquisit ion mode.

The drain source code is part of the C++ and the Python client library packages. You can
compile the C++ source code, or run the Python source uncompiled using a Python interpreter.

Chapter 5. Message Delivery and Acceptance

63

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10287-188793+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Message+Distribution+on+the+Broker&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10285-189200+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Message+Receive+over+Reliable+Link&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10283-188817+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Message+Receive+over+Unreliable+Link&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

When the client library packages are installed, drain can be found in:

/usr/share/doc/python-qpid-0.14/examples/api/drain
/usr/share/qpidc/examples/messaging/drain.cpp

To demonstrate the difference between browsing and acquisit ion, you can try the following:

With the broker installed and running, create a queue with the qpid-config command:

qpid-config add queue browse-acquire-demo

You should now see your browse-acquire-demo queue when you run qpid-config queues.

Now let 's send a message to the browse-acquire-demo using spout. Spout is included in the
same packages as drain, and can be found in the same directories. Run spout to send a
message to the queue:

./spout browse-acquire-demo "Hello World"

Our "Hello World" message has now been sent to the browse-acquire-demo queue. Let 's use
drain to browse it first of all:

./drain -c 0 "browse-acquire-demo; {mode:browse}"

You will now see the "Hello World" message. Run the above drain a second t ime, and you'll see
the message again. Running the drain program twice simulates two different browsing
consumers accessing the queue. The message is read and remains available for other
consuming applicat ions when it is browsed.

Try delet ing the browse-acquire-demo queue using qpid-config:

qpid-config del queue browse-acquire-demo

qpid-config responds with an error because a message remains in the queue.

Now run this drain command:

./drain -c 0 "browse-acquire-demo"

The default mode is acquisition. When drain is run like this with no mode specified, it acquires
the message. You will see the "Hello World" message just as you did on the previous browsing
accesses. However, this t ime the message has been removed. Try browsing it again using
drain. The queue is empty.

You can delete the now-empty queue using qpid-config:

qpid-config del queue browse-acquire-demo

One thing you will not see with the drain demo is the fact that browsers see a message only
once. Because each t ime drain is run it creates a different browser, it sees the message in
the queue each t ime. The same browser, however, sees the message only once, no matter
how many t imes it looks.

The following Python code demonstrates browsing and acquiring, and demonstrates how a
browser sees each message once:

Python

Red Hat Enterprise MRG 2 Messaging Programming Reference

64

Browser 1 and Browser 2 both see the message, and only see it once each. Because the
message is acquired before Browser 3 looks at the queue, Browser 3 sees no message on the
queue.

However, now run drain to examine the queue:

./drain -c 0 browse-acquire-demo

You may be surprised to see the message st ill on the queue (you just removed it , by the way).
What happened?

Acquired and Acknowledged

When our receiver acquired the message from the queue, the broker set the message to
acquired. When a message is acquired, the broker treats the message as if it has been
delivered, but it does not delete it from the queue. One of a number of things happen from

import sys
from qpid.messaging import *

def msgfetch(rx):
 try:
 msg = rx.fetch(timeout=1)
 except MessagingError, m:
 msg = m
 return msg

connection = Connection("localhost:5672")
connection.open()
try:
 session = connection.session()
 tx = session.sender("browse-acquire-demo;{create:always}")
 rxbrowse1 = session.receiver("browse-acquire-demo;{mode:browse}")
 rxbrowse2 = session.receiver("browse-acquire-demo;{mode:browse}")
 rxbrowse3 = session.receiver("browse-acquire-demo;{mode:browse}")
 rxacquire = session.receiver("browse-acquire-demo")

 tx.send("Hello World")

 print "\nBrowser 1 saw message:"
 print msgfetch(rxbrowse1)

 print "Browser 1 then saw message:"
 print msgfetch(rxbrowse1)

 print "\nBrowser 2 saw message:"
 print msgfetch(rxbrowse2)

 print "Browser 2 then saw message:"
 print msgfetch(rxbrowse2)

 print "\nAcquired message:"
 print msgfetch(rxacquire)

 print "\nBrowser 3 saw message:"
 print msgfetch(rxbrowse3)

except MessagingError, m:
 print m
finally:
 connection.close()

Chapter 5. Message Delivery and Acceptance

65

here: the consumer who acquired the message acknowledges the message, releases the
message, or rejects the message, or the consumer might disconnect through a network failure.

In our case, our applicat ion is disconnecting from the broker without acknowledging receipt of
the message. While our applicat ion is connected the message is acquired, and message
consumers browsing or fetching from the queue will not see the message. When our applicat ion
disconnects without acknowledging receipt, the broker switches the message out of acquired
state and sets a header redelivered=True. The message is then made available to other
consumers, such as the drain browser that we ran after our applicat ion closed.

This goal of the "acquire, acknowledge" pattern is to provide reliable delivery of messages.
Imagine a situation where a group of nodes are performing a service that is driven by
messages. Each node in the workgroup grabs a bunch of messages from the queue when it has
the capacity to perform some work. A node might grab a handful of messages from the queue,
and then suffer a power outage. In this case those messages would be missing, if the broker
did not have the concept of acquire and acknowledge. With this pattern, the worker node can
acquire the messages, perform some work, and then acknowledge ownership at a point in t ime
where it is safe to say that the message has been delivered and acted on. This narrows the
window for exceptions. Even in the case where the node fails right at the crit ical moment after
it has acted on the messages but before it can acknowledge receipt, the other nodes will
retrieve the messages from the queue with the header 'redelivered=true'. This alerts the
other nodes that this message may have already been acted on, and they can perform checks
to see if that is so. This narrows the window for exceptions even further, when the applicat ions
are designed to take advantage of these features.

To see a message returning to the queue when a consumer disconnects without acquiring the
message demonstrated inside the applicat ion, add the following code to the end of the
applicat ion, after the final connection.close() line:

Our applicat ion closes its connection, disconnecting the consumer from the broker without
acknowledging receipt of the message. We then open a new connection to broker, effect ively
appearing as a new consumer. Our receiver now sees the message, which has been marked by
the broker as redelivered to inform us that another consumer acquired this message
previously. We have now acquired this message, and it will again disappear for other consumers
browsing or fetching from this queue. This t ime, however, we call session.acknowledge()
before closing the connection. This method acknowledges receipt of the message (it
acknowledges all messages as-yet unacknowledged for the session). Since we have
acknowledged receipt of the message, the message is acquired, and it is removed from the
queue.

If you run drain now, you will see that there are no messages in the queue.

Releasing a message

Python

connection.open()
try:
 session=connection.session()

 rxacquire2 = session.receiver("browse-acquire-demo")
 print "\nAcquirer 2 saw message:"
 print msgfetch(rxacquire2)
except MessagingError, m:
 print m
finally:
 session.acknowledge()
 connection.close()

Red Hat Enterprise MRG 2 Messaging Programming Reference

66

Report a bug

A consumer can explicit ly release a message. When this happens, the message is returned to
the queue for redelivery. The effect is the same as if the consumer lost its connection to the
broker.

To release the message explicit ly with the Python API, call the acknowledge() method with the
message and Disposition(RELEASED) as parameters:

session.acknowledge(msg, Disposition(RELEASED))

To release the message explicit ly with the C++ API, call the session's release() method.

Link Reliability

Note that this two-phase acquisit ion and acceptance behavior is the behavior over a reliable
link (technically an at-least-once link), which is the default link for receiver connections to the
broker. If you explicit ly connect your receiver to a queue using an unreliable link, or direct ly
connect to an exchange, then received messages are immediately acquired with no need to
acknowledge them.

Cleaning up the demo queue

To delete the queue we used for this demo, you can either restart the broker (all non-durable
queues are deleted when the broker is restarted), or you can use qpid-config:

qpid-config del queue browse-acquire-demo

If there are messages remaining in the queue this command will fail with an message informing
you that the queue is not empty. You can use the --force switch to override this check and
delete a queue with messages in it , or you can use drain to empty the queue, and then
reissue the command on the now-empty queue.

5.2.2. Message Acquisition and Acceptance on an
Unreliable Link
The default link between a receiver and the broker is a reliable link (technically known as a link
with at-least-once reliability). This link uses a two-phase acquire and acknowlege behavior to
ensure that the responsibility for a message is explicit ly accepted by a consumer before the
broker deletes it from the queue.

You can also request an unreliable link between the receiver and the broker. Over an unreliable
link, messages are considered acknowledged and acquired as soon as the consumer fetches
them from the queue. There is no acquired phase where a message will return to the queue if
the receiver does not explicit ly acknowledge it . The broker considers that the consumer has
acknowledged the acquisit ion and deletes the message when the consumer fetches it , without
wait ing for an acquisit ion acknowledgement. This link has reduced reliability, but can result in
increased throughput. It is useful when you can afford to lose messages in the event of
consumer failure.

To request an unreliable link, specify link: {reliability: unreliable} in the address. For
example, to create a receiver with an unreliable link to a queue named "browse-acquire-demo":

Python

rxacquire = session.receiver("browse-acquire-demo; {link:{reliability:
unreliable}")

Chapter 5. Message Delivery and Acceptance

67

http://qpid.apache.org/apis/0.16/cpp/html/a00294.html#a305fa96f24660aa8aceea4c26a2db259
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8241-171072+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Message+Acquisition+and+Acceptance&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

The following program demonstrates the use and behavior of receivers using an unreliable link:

Python

Red Hat Enterprise MRG 2 Messaging Programming Reference

68

import sys
from qpid.messaging import *

def msgfetch(rx):
 try:
 msg = rx.fetch(timeout=1)
 except MessagingError, m:
 msg = m
 return msg

linktype=""
while linktype != "R" and linktype !="U":
 response = raw_input("Use (R)eliable or (U)nreliable link [R/U]?")
 linktype = response.upper()

connection = Connection("localhost:5672")
connection.open()
try:
 session = connection.session()
 tx = session.sender("browse-acquire-demo;{create: always}")
 rxbrowse1 = session.receiver("browse-acquire-demo;{mode:browse}")
 rxbrowse2 = session.receiver("browse-acquire-demo;{mode:browse}")
 rxbrowse3 = session.receiver("browse-acquire-demo;{mode:browse}")
 if linktype == "R":
 rxacquire = session.receiver("browse-acquire-demo")
 else:
 rxacquire = session.receiver("browse-acquire-demo;
{link:{reliability:unreliable}}")

 tx.send("Hello World")

 print "\nBrowser 1 saw message:"
 print msgfetch(rxbrowse1)

 print "Browser 1 then saw message:"
 print msgfetch(rxbrowse1)

 print "\nBrowser 2 saw message:"
 print msgfetch(rxbrowse2)

 print "Browser 2 then saw message:"
 print msgfetch(rxbrowse2)

 print "\nAcquired message:"
 print msgfetch(rxacquire)

 rxacquire.close()

 print "\nBrowser 3 saw message:"
 print msgfetch(rxbrowse3)

except MessagingError, m:
 print m
finally:
 connection.close()

connection.open()
try:
 session=connection.session()

 rxacquire2 = session.receiver("browse-acquire-demo")
 print "\nAcquirer 2 saw message:"
 print msgfetch(rxacquire2)

Chapter 6. Advanced Queue Features

69

Report a bug

Report a bug

When you select a reliable link for the demonstrat ion, Acquirer 2 sees a redelivered message:

Acquirer 2 saw message:
Message(redelivered=True, properties={'x-amqp-0-10.routing-key': u'browse-acquire-
demo'}, content='Hello World')

Because the first acquirer did not acknowledge the message acquisit ion before disconnecting,
the broker has returned the message to the queue for redelivery.

When you select an unreliable link for the demonstrat ion, Acquirer 2 does not see any
message:

Acquirer 2 saw message:
None

On an unreliable link, even though the first acquirer did not explicit ly accept responsibility for
the message by acknowledging acquisit ion, the broker has deleted the message from the
queue. That's the meaning of unreliable.

Releasing and Rejecting messages over an unreliable link

It is not possible to release or reject messages acquired over an unreliable link. Over an
unreliable link messages are implicit ly acknowledged when they are fetched.

5.2.3. Message Rejection
After acquiring a message on a reliable link your applicat ion can reject it . When a message is
rejected the broker will delete it from the queue. If the queue is configured with an alternate
exchange, then the rejected message is routed there; otherwise it is discarded.

To reject a message using the Python API, call the acknowledge() method of the session,
passing in the message that you wish to reject, and specify REJECTED as the Disposition
parameter:

Note that this is only possible when using a reliable link. When using an unreliable link,
mesages are implicit ly acknowledged when they are fetched.

except MessagingError, m:
 print m
finally:
 session.acknowledge()
 connection.close()

Python

msg = rx.fetch(timeout = 1)

if msg.content == "something we don't like":
 ssn.acknowledge(msg, Disposition(REJECTED))
else:
 ssn.acknowlege(msg)

Red Hat Enterprise MRG 2 Messaging Programming Reference

70

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10258-176900+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Message+Acquisition+and+Acceptance+on+an+Unreliable+Link&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10212-176897+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Message+Rejection&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Prerequisites:

Section 7.3.2, “Enable Receiver Prefetch”

A Receiver object receives messages from a single subscript ion. An applicat ion can create
many receivers, and may wish to deal with messages from these various receivers in the order
that the messages are received. The session object provides a method nextReceiver that
allows an applicat ion to read messages from mult iple receivers in a federated order.

Note: To use the Next Receiver feature, prefetch must be enabled for the receivers, and the
receivers must be using the same session.

5.2.5. Rejected and Orphaned Messages
Messages can be explicit ly rejected by a consumer. When a message is fetched over a reliable
link, the consumer must acknowledge the message for the broker to release it . Instead of
acknowledging a message, the consumer can reject the message. The broker discards rejected
messages, unless an alternate exchange has been specified for the queue, in which case the
broker routes rejected messages to the alternate exchange.

Messages are orphaned when they are in a queue that is deleted. Orphaned messages are
discarded, unless an alternate exchange is configured for the queue, in which case they are
routed to the alternate exchange.

Python

receiver1 = session.receiver(address1)
receiver1.capacity = 10
receiver2 = session.receiver(address)
receiver2.capacity = 10
message = session.next_receiver().fetch()
print message.content
session.acknowledge()

C++

Receiver receiver1 = session.createReceiver(address1);
receiver1.setCapacity(10);
Receiver receiver2 = session.createReceiver(address2);
receiver2.setCapacity(10);

Message message = session.nextReceiver().fetch();
std::cout << message.getContent() << std::endl;
session.acknowledge(); // acknowledge message receipt

.NET/C#

Receiver receiver1 = session.CreateReceiver(address1);
receiver1.SetCapacity(10);
Receiver receiver2 = session.CreateReceiver(address2);
receiver2.SetCapacity(10);

Message message = new Message();
message = session.NextReceiver().Fetch();
Console.WriteLine("{0}", message.GetContent());
session.Acknowledge();

Chapter 6. Advanced Queue Features

71

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8057-216140+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Receiving+Messages+from+Multiple+Sources&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

5.2.6. Alternate Exchange
An alternate exchange provides a delivery alternative for messages that cannot be delivered
via their init ial routing.

For an alternate exchange specified for a queue, two types of unroutable messages are sent
to the alternate exchange:

1. Messages that are acquired and then rejected by a message consumer (rejected
messages).

2. Unacknowledged messages in a queue that is deleted (orphaned messages).

For an alternate exchange specified for an exchange, one type of unroutable messages is sent
to the alternate exchange:

1. Messages sent to the exchange with a routing key for which there is no matching binding
on the exchange.

Note that a message will not be re-routed a second t ime to an alternate exchange if it is
orphaned or rejected after previously being routed to an alternate exchange. This prevents the
possibility of an infinite loop of re-routing.

However, if a message is routed to an alternate exchange and is unable to be delivered by that
exchange because there is no matching binding, then it will be re-routed to that exchange's
alternate exchange, if one is configured. This ensures that fail-over to a dead letter queue is
possible.

Red Hat Enterprise MRG 2 Messaging Programming Reference

72

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8111-319298+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Rejected+and+Orphaned+Messages&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8056-319298+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Alternate+Exchange&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Chapter 6. Advanced
Queue Features
6.1. Browse-only Queues
Queues declared "browse-only" allow subscribers to access them and acquire their messages
normally, but message acquisit ion transparently results only in a browse. The message will
remain on the queue, and accessible to other subscribers.

Messages can only be removed from a browse-only queue by some non-acquisit ion mechanism:
for example, when the message's TTL (t ime-to-live) duration expires.

The spout and drain programs are part of the client libraries package and when installed can be
found at:

/usr/share/doc/python-qpid-${version}/examples/api/

Here is an example of the creation and use of a browse-only queue by the spout and drain
clients.

./spout \
 -c 10 \
 --broker "localhost:${PORT}" \
 'q; {create: always, node:{type:queue , x-declare:{arguments:{"qpid.browse-
only":1}}}}' \
 "All work and no play makes Mick a dull boy."

 ./drain --broker 'localhost:${PORT}' 'q'

See Also:

Section 5.2, “Browsing and Consuming Messages”

6.2. Ignore Locally Published Messages
You can configure a queue to discard all messages published using the same connection as the
session that owns the queue. This suppresses a message loop-back when an applicat ion
publishes messages to an exchange that it is also subscribed to.

To configure a queue to ignore locally published messages, use the no-local key in the queue
declarat ion as a key:value pair. The value of the key is ignored; the presence of the key is
sufficient.

For example, to create a queue that discards locally published messages using qpid-config:

qpid-config add queue noloopbackqueue1 --argument no-local=true

Note that mult iple dist inct sessions can share the same connection. A queue set to ignore
locally published messages will ignore all messages from the connection that declared the
queue, so all sessions using that connection are local in this context.

Chapter 6. Advanced Queue Features

73

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=13173-372114+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Browse-only+Queues&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8053-369455+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Ignore+Locally+Published+Messages&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

6.3. Exclusive Queues
Exclusive queues can only be used in one session at a t ime. When a queue is declared with the
exclusive property set, that queue is not available for use in any other session until the session
that declared the queue has been closed.

If the server receives a declare, bind, delete or subscribe request for a queue that has been
declared as exclusive, an exception will be raised and the requesting session will be ended.

Note that a session close is not detected immediately. If clients enable heartbeats, then
session closes will be determined within a guaranteed t ime. See the client APIs for details on
how to set heartbeats in a given API.

6.4. Automatically Deleted Queues

6.4.1. Automatically Deleted Queues
Queues can be configured to auto-delete. The broker will delete an auto-delete queue when it
has no more subscribers, or if it is auto-delete and exclusive, when the declaring session ends.

Applicat ions can delete queues themselves, but if an applicat ion fails or loses its connection it
may not get the opportunity to clean up its queues. Specifying a queue as auto-delete
delegates the responsibility to the broker to clean up the queue when it is no longer needed.

Auto-deleted queues are generally created by an applicat ion to receive messages, for
example: a response queue to specify in the "reply-to" property of a message when
requesting information from a service. In this scenario, an applicat ion creates a queue for its
own use and subscribes it to an exchange. When the consuming applicat ion shuts down, the
queue is deleted automatically. The queues created by the qpid-config ut ility to receive
information from the message broker are an example of this pattern.

A queue configured to auto-delete is deleted by the broker after the last consumer has
released its subscript ion to the queue. After the auto-delete queue is created, it becomes
eligible for delet ion as soon as a consumer subscribes to the queue. When the number of
consumers subscribed to the queue reaches zero, the queue is deleted.

Here is an example using the Python API to create an auto-delete queue with the name "my-
response-queue":

Note: since no bindings are specified in this queue creation, it will be bound to the server's
default exchange, a pre-configured nameless direct exchange.

A t imeout can be configured to provide a grace period before the delet ion occurs. If a t imeout
of 120 seconds is specified, for example, then the broker will wait for 120 seconds after the
last consumer disconnects from the queue before delet ing it . If a consumer subscribes to the
queue within that grace period, the queue is not deleted. This is useful to allow for a consumer
to drop its connection and reconnect without losing the information in its queue.

Here is an example using the Python API to create an auto-delete queue with the name "my-
response-queue" and an auto-delete t imeout of 120 seconds:

Python

responsequeue = session.receiver('my-response-queue; {create:always, node:{x-
declare:{auto-delete:True}}}')

Red Hat Enterprise MRG 2 Messaging Programming Reference

74

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8103-319298+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Exclusive+Queues&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Be aware that a public auto-deleted queue can be deleted while your applicat ion is st ill sending
to it , if your applicat ion is not holding it open with a receiver. You will not receive an error
because you are sending to an exchange, which continues to exist; however your messages will
not go to the now non-existent queue. If you are publishing to a self-created auto-deleted
queue you should consider carefully if you should be using an auto-deleted queue. If the answer
is "yes" (it can be useful for tests that clean up after themselves), then subscribe to the
queue when you create it . Your subscript ion will then act as a handle, and the queue will not be
deleted until you release it . Using the Python API:

An exception to the requirement that a consumer subscribe and then unsubscribe to invoke
the auto-delet ion is a queue configured to be exclusive and auto-delete; these queues are
deleted by the broker when the session that declared the queue ends, since the session that
declared the queue is only possible subscriber.

6.4.2. Automatically Deleted Queue Example
The following Python code demonstrates the behavior of an auto-delete queue. Auto-delete
queues are cleaned up by the broker when an applicat ion quits. They are usually used to
subscribe to an exchange, and a typical use-case is to create an auto-delete queue to specify
in the "reply-to" field of a message, to get a response back.

This demonstrat ion uses an auto-delete queue to publish information to a subscriber. This is
not a typical use of auto-delete queue, for reasons that we will discover.

Copy the code below and save it as auto-delete-producer.py. It can be run using a Python
interpreter.

Python

responsequeue = session.receiver("my-response-queue; {create:always, node:{x-
declare:{auto-delete:True, arguments:{'qpid.auto_delete_timeout':120}}}}")

Python

testqueue = session.sender("my-test-queue; {create:always, node:{x-
declare:{auto-delete:True}}}")
testqueuehandle = session.receiver("my-test-queue")

connection.close()
testqueuehandle is now released

Python

Chapter 6. Advanced Queue Features

75

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8040-319298+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Automatically+Deleted+Queues&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Restart the broker on the local machine. Whenever the broker is restarted, all non-durable
queues are deleted. This allows you to start this test with a clean slate.

Run the command:

qpid-config queues

This lists all the queues on the broker. There will be a dynamically generated queue with a
random name with exclusive and auto-del. This is the queue that qpid-config is using to
retrieve the list of queues, and will change each t ime you run the command.

Now start the auto-delete-producer.py program using a Python interpreter:

python auto-delete-producer.py

The program pauses and prompts you to press Enter. Press Enter to continue.

Now run qpid-config queues again to list the queues on the broker. This t ime you will see the
test-queue that our program created. Our program has exited, but the queue has not been
deleted because so far no-one has subscribed to it .

We will now use the drain ut ility to examine the messages on the queue. The drain ut ility is
part of the C++ and Python client library packages.

When drain runs, it subscribes to the queue, retrieves messages, and then unsubscribes. Run:

drain -c 0 test-queue

The messages from the test-queue will be displayed on the screen. When you run qpid-config
queues now, you will see that the test-queue has been deleted. A consumer subscribed to the
queue, and then unsubscribed.

Try the process again, and this t ime use drain to browse the queue, rather than acquire the
messages:

drain -c 0 "test-queue;{mode:browse}"

You will observe that the queue is deleted even when it is browsed. Browsing counts as a
subscript ion as much as acquiring.

Now, to see something very interest ing, we will subscribe to the queue and then unsubscribe
while our program is running.

Copy the following code into a file auto-delete-subscribe.py:

import sys
from qpid.messaging import *

connection=Connection("localhost:5672")
connection.open()
try:
 session=connection.session()
 tx=session.sender("test-queue; {create:always, node:{x-declare:{auto-
delete:True}}}")
 tx.send("test message!")
 x = raw_input("Press Enter to continue")
 tx.send("test message 2")
except MessagingError, m:
 print m
connection.close()

Red Hat Enterprise MRG 2 Messaging Programming Reference

76

Now run auto-delete-producer.py. When it pauses, run auto-delete-subscriber.py, then
check qpid-config queues. You'll see that the queue has been deleted.

Now press Enter to continue. When the program finishes, use drain to browse the test-queue.
It doesn't exist.

The test-queue created by auto-delete-producer.py was deleted when our consumer
program subscribed to the queue by creating and attaching a receiver, and then unsubscribed
by closing the connection. The second message sent by our message producer was never
delivered and no exception was raised.

This is something to be aware of: a sender is a handle to a local router that routes messages
to the message broker. The constructor parameter of the sender is a routing key. Our
constructor is the name of a queue, but a sender always routes messages to an exchange.
When no exchange is specified, the default exchange is used: a nameless direct exchange on
the broker. The sender's constructor checks that the routing key it is given refers to a valid
target on the message broker, so it checks that there is a "test-queue" on the default
exchange. At the t ime the sender is created this queue exists. After that, the sender's send
method routes messages to the default exchange on the broker with a routing key set to
"test-queue". Since the target exchange st ill exists no exception is raised when we send. The
message arrives at the default exchange on the broker, where it is discarded because there is
no queue subscribed to the exchange that matches the routing key.

To avoid this scenario, you should either use a non-auto-delet ing queue for publishing, or you
can create and subscribe a receiver alongside the sender. This guarantees that the queue will
continue to exist for the lifet ime of your sender. To do this in our program, we will create and
subscribe a receiver direct ly after the sender creates the queue. We will also add a second
pause where we can check the existence and state of the test-queue. Here's the updated
program:

Python

import sys
from qpid.messaging import *

connection=Connection("localhost:5672")
connection.open()
try:
 session=connection.session()
 rx=session.receiver("test-queue")
 print rx.fetch(timeout = 1)
 session.acknowledge()
except MessagingError,m:
 print m
connection.close()

Python

Chapter 6. Advanced Queue Features

77

Report a bug

Report a bug

Report a bug

Now start the auto-delete-producer.py program. Run auto-delete-subscriber.py in the first
pause. Previously, this would delete the queue, and the second message would go nowhere.
This t ime our producer's own subscript ion is keeping the queue alive. Press Enter to have auto-
delete-producer.py send the second message. Now check the queue using either drain or
auto-delete-subscriber.py. This t ime you'll see that the queue exists and the message has
been delivered as expected.

6.4.3. Queue Deletion Checks
When a queue delet ion is requested, the following checks occur:

If ACL is enabled, the broker will check that the user who init iated the delet ion has
permission to do so.
If the ifEmpty flag is passed the broker will raise an exception if the queue is not empty
If the ifUnused flag is passed the broker will raise an exception if the queue has subscribers
If the queue is exclusive the broker will check that the user who init iated the delet ion owns
the queue

6.5. Last Value (LV) Queues

6.5.1. Last Value Queues
Last Value Queues allow messages in the queue to be overwritten with updated versions.
Messages sent to a Last Value Queue use a header key to identify themselves as a version of
a message. New messages with a matching key value arriving on the queue cause any earlier
message with that key to be discarded. The result is that message consumers who browse the
queue receive the latest version of a message only.

6.5.2. Declaring a Last Value Queue
Last Value Queues are created by supplying a qpid.last_value_queue_key when creating the
queue.

import sys
from qpid.messaging import *

connection=Connection("localhost:5672")
connection.open()
try:
 session=connection.session()
 tx=session.sender("test-queue; {create:always, node:{x-declare:{auto-
delete:True}}}")
 rx=session.receiver("test-queue")
 tx.send("test message!")
 x = raw_input("Press Enter to continue")
 tx.send("test message 2")
 x = raw_input("Press Enter to continue")
except MessagingError, m:
 print m
connection.close()

Red Hat Enterprise MRG 2 Messaging Programming Reference

78

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10206-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Automatically+Deleted+Queue+Example&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8035-319298+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Queue+Deletion+Checks&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8099-319298+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Last+Value+Queues&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

For example, to create a last value queue called 'stock-t icker' that uses 'stock-symbol' as the
key, using qpid-config:

qpid-config add queue stock-ticker --argument qpid.last_value_queue_key=stock-
symbol

To create the same queue in an applicat ion:

6.5.3. Last Value Queue Example
This example demonstrates how to create and use a Last Value Queue. The language bindings
and programming details differ between languages, but the principles are the same.

We will create a messaging queue that provides regular stock price updates. Message
consumers are interested in the current stock price, and do not wish or need to receive
messages with historical information. A last value queue is perfect for this applicat ion: newly
arriving messages can update and replace older ones.

We will call our queue "stock-t icker". Our stock-t icker queue will use "stock-symbol" as the last
value queue key. The value of this key in the message header will identify a message as a new
message to the queue, or an update to a message already in the queue.

First we import the Qpid Messaging client library:

Now we create a Connection to the broker running on the standard AMQP port, 5672, on the
local machine:

And now we use this connection to create a session:

Now we create a sender and declare a last value queue at the same t ime. We will create a
queue called "stock-t icker", and use "stock-symbol" as the last value queue key. Messages
sent to this queue will identify themselves as an update to a previous message by specifying

Python

myLastValueQueue = mySession.sender("stock-ticker;{create:always,
node:{type:queue, x-declare:{arguments:{'qpid.last_value_queue_key': 'stock-
symbol'}}}}")

Python

import sys
from qpid.messaging import *

Python

connection = Connection("localhost:5672")
connection.open()

Python

session = connection.session()

Chapter 6. Advanced Queue Features

79

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8116-319298+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Declaring+a+Last+Value+Queue&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

the same "stock-symbol" in their headers.

The following statement is a single line of code. It may break across lines in display, but it
should be entered as a single line.

Sidenote: We could also create the queue using the qpid-config command line tool:

qpid-config add queue stock-ticker --argument qpid.last_value_queue_key=stock-
symbol

Now let 's create and send some messages to the queue. We use the "stock-symbol" key in
the header to identify which stock a message describes. Our last value queue uses this header
key to match our message with messages already in the queue.

After sending these messages to our last value queue a new consumer should see three
messages in the queue, one for each stock symbol, with msg4 updating msg1. To contrast the
behavior of the last value queue with a standard FIFO queue, we'll send our messages to a
control queue, called control-queue at the same t ime:

Now we send our messages to the two queues:

Python

stockSender = session.sender("stock-ticker;{create:always, node:{type:queue, x-
declare:{arguments:{'qpid.last_value_queue_key': 'stock-symbol'}}}}")

Python

msg1 = Message("10")
msg1.properties = {'stock-symbol':'RHT'}

msg2 = Message("10")
msg2.properties = {'stock-symbol':'JAVA'}

msg3 = Message("10")
msg3.properties = {'stock-symbol':'MSFT'}

msg4 = Message("12")
msg4.properties = {'stock-symbol':'RHT'}

Python

controlSender = session.sender("control-queue;{create:always,
node:{type:queue}}")

Python

Red Hat Enterprise MRG 2 Messaging Programming Reference

80

Our messages are now in the queues. We create two receivers to now examine the content of
the queues:

These are browsing receivers, so they do not acquire messages and remove them from the
queue. To clear the queues, remove the browse property from the receiver declarat ions, like
so: session.receiver("stock-ticker"), and run the demo again. With the receivers browsing,
you will be able to see more dist inct ly the effect of a Last Value Queue over t ime by running
the demo several t imes in succession without clearing the queues.

We will use the prefetch capability of the receivers to browse messages on the queue, and to
allow us to count how many messages are in the queue using the available() method. We do
this by sett ing the receivers' prefetch capacity to a value higher than the default of 0:

Once the prefetch capacity of the receiver is set to 20, up to 20 available messages are
retrieved asynchronously from the queue. Because the operation is asynchronous we need to
wait for it to complete. We will put our applicat ion to sleep for 10 seconds before examining
the prefetched messages:

We need to import sleep from the t ime library:

Note that we do this in order to examine the available() property of the receiver with
certainty that this represents the number of messages in the queue. When operating
asynchronously available() reports the number of messages available locally. After a ten

stockSender.send(msg1)
controlSender.send(msg1)

stockSender.send(msg2)
controlSender.send(msg2)

stockSender.send(msg3)
controlSender.send(msg3)

stockSender.send(msg4)
controlSender.send(msg4)

Python

stockBrowser = session.receiver("stock-ticker; {mode:browse}")
controlBrowser = session.receiver("control-queue; {mode:browse}")

Python

stockBrowser.capacity = 20
controlBrowser.capacity = 20

Python

sleep 10

Python

from time import sleep

Chapter 6. Advanced Queue Features

81

second delay, we can be reasonably certain that this is the total number of messages in the
queue. In an actual asynchronous operation you would not want to block execution of your
applicat ion. Instead you would use a pattern like this:

When our applicat ion finishes its sleep cycle, we will examine the number of messages in the
queue, and print them out:

And finally we acknowledge our session and close the connection:

We are now ready to run our test. Here's the complete program list ing:

Python

while True:
 try:
 msg = stockBrowser.fetch(timeout = 10)
 print msg.properties["stock-symbol"] + ":" + msg.content
 except Empty:
 break

Python

print "Last Value Queue has " + str(stockBrowser.available()) + " messages"

print "\nLast Value Queue messages:"

for x in range(stockBrowser.available()):
 try:
 msg = stockBrowser.fetch(timeout = 1)
 print msg.properties["stock-symbol"] + ":" + msg.content
 except MessagingError, m:
 pass

print "Control Queue has " + str(controlBrowser.available()) + " messages"

print "\nControl Queue messages:"
for x in range(controlBrowser.available()):
 try:
 msg = controlBrowser.fetch(timeout = 1)
 print msg.properties["stock-symbol"] + ":" + msg.content
 except MessagingError, m:
 pass

Python

session.acknowledge()
connection.close()

Python

Red Hat Enterprise MRG 2 Messaging Programming Reference

82

import sys
from qpid.messaging import *
from time import sleep

connection = Connection("localhost:5672")
try:
 connection.open()
 session = connection.session()

 stockSender = session.sender("stock-ticker;{create:always, node:{type:queue,
x-declare:{arguments:{'qpid.last_value_queue_key': 'stock-symbol'}}}}")
 controlSender = session.sender("control-queue;{create:always,
node:{type:queue}}")

 stockBrowser = session.receiver("stock-ticker;{mode:browse}")
 controlBrowser = session.receiver("control-queue;{mode:browse}")
 controlBrowser = session.receiver("control-queue")

 msg1 = Message("10")
 msg1.properties = {'stock-symbol':'RHT'}

 msg2 = Message("10")
 msg2.properties = {'stock-symbol':'JAVA'}

 msg3 = Message("10")
 msg3.properties = {'stock-symbol':'MSFT'}

 msg4 = Message("12")
 msg4.properties = {'stock-symbol':'RHT'}

 stockSender.send(msg1)
 controlSender.send(msg1)

 stockSender.send(msg2)
 controlSender.send(msg2)

 stockSender.send(msg3)
 controlSender.send(msg3)

 stockSender.send(msg4)
 controlSender.send(msg4)

 stockBrowser.capacity = 20
 controlBrowser.capacity = 20

 sleep(10)

 print "\nLast Value Queue has " + str(stockBrowser.available()) + " messages"

 print "Last Value Queue messages:"

 for x in range(stockBrowser.available()):
 try:
 msg = stockBrowser.fetch(timeout = 1)
 print msg.properties["stock-symbol"] + ":" + msg.content
 except MessagingError, m:
 pass

 print "\nControl Queue has " + str(controlBrowser.available()) + " messages"

 print "Control Queue messages:"

 for x in range(controlBrowser.available()):
 try:

Chapter 6. Advanced Queue Features

83

Report a bug

Report a bug

6.5.4. Last Value Queue Command-line Example
The included programs drain and spout can be used for sending and receiving messages for
test ing purposes. The source code for the two utilit ies is included in the Python and C++ client
library packages. The Python version can be run uncompiled using a Python interpreter.

Run the following qpid-config command to create a Last Value Queue:

qpid-config add queue my-queue --argument qpid.last_value_queue_key=type

The header key 'type' is used to match messages in the queue.

Now start one or more browsers using the drain command:

./drain -f -c 0 'my-queue; {mode: browse}'

These browsers will see all the messages as they arrive in the queue in real-t ime.

Now use spout to send messages to the queue, sett ing a header value for the key 'type':

./spout -P type=a my-queue a1

./spout -P type=a my-queue a2

./spout -P type=a my-queue a3

./spout -P type=b my-queue b1

./spout -P type=c my-queue c1

./spout -P type=c my-queue c2

./spout -P type=a my-queue a4

The browsers started before these messages were published will see all messages as they
arrive.

Now start a new browser:

./drain -c 0 'my-queue; {mode: browse}'

This browser will see only the last messages for each of the unique 'type' values.

6.6. Priority Queuing

6.6.1. Priority Queuing
Priority queues deliver messages based on their priority. Higher priority messages are delivered

 msg = controlBrowser.fetch(timeout = 1)
 print msg.properties["stock-symbol"] + ":" + msg.content
 except MessagingError, m:
 pass

 session.acknowledge()

except MessagingError,m:
 print m
finally:
 connection.close()

Red Hat Enterprise MRG 2 Messaging Programming Reference

84

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8393-171300+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Last+Value+Queue+Example&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10133-222045+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Last+Value+Queue+Command-line+Example&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Report a bug

before lower priority messages. A total of 10 dist inct priority levels are possible.

A priority queue is declared with a qpid.priority attribute. This attribute is an integer value
between 1 and 10, and defines the number of dist inct priority levels for the queue.

For example, when the qpid.priority attribute of a queue is set to 10, there are ten dist inct
priority levels for the queue. In this case a message with a priority level of 10 is delivered
before a message with a priority of 9, which is delivered before a message with a priority level
of 5, which is delivered before a message with a priority level of 1.

If the qpid.priority attribute of a queue is set to 2, there are two dist inct priority levels for
the queue. In this case message priorit ies 6-10 is the queue priority level 1, and message
priorit ies 1-5 is the queue priority level 2. Messages in the same priority band are delivered
based on their priority and the order in which they are received.

6.6.2. Declaring a Priority Queue
To declare a priority queue, specify a value for qpid.priorities in the x-declare arguments
of the node declarat ion. For example:

Using qpid-config:

qpid-config add queue 'my-queue; {create: always, node:{x-
declare:{arguments:{qpid.priorities:10}}}}'

6.6.3. Considerations when using Priority Queues
Browsing Consumers and Priority Queues

Priority Queues deliver messages to acquiring consumers in order of priority, rather than the
usual First-In-First-Out (FIFO) order of a queue. The delivery order for browsing consumers is
"undefined". At the t ime of writ ing, browsing consumers receive messages from a priority
queue in FIFO order; however, you should not rely on this behavior in your applicat ions, as it may
change in the future.

Fairshare feature

If the message enqueue rate sufficient outpaces the dequeue rate in a priority queue, it is
possible that lower priority messages may never be removed from the queue. To avoid this
situation the Fairshare feature allows a consumer to take a specified block of message from
each priority level in turn.

6.6.4. Priority Queue Demonstration
The following program demonstrates the use and behavior of a priority queue.

Python

sender = session.sender('my-queue; {create: always, node:{x-
declare:{arguments:{qpid.priorities:10}}}}')

Chapter 6. Advanced Queue Features

85

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8403-171270+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Priority+Queuing&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8401-171280+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Declaring+a+Priority+Queue&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10780-182481+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Considerations+when+using+Priority+Queues&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Python

Red Hat Enterprise MRG 2 Messaging Programming Reference

86

#!/usr/bin/python

import sys
from qpid.messaging import *

connection = Connection("localhost:5672")
connection.open()
try:
 ssn = connection.session()

 x = 0
 print "\n"
 while True:
 print "Create queue with 2 or 10 priority levels?"
 x = raw_input()
 if (x == "2") or (x == "10"):
 break

 tx = ssn.sender("nonpriority-demo-queue; {create: always, node: {type:
'queue'}}")
 print "Creating a priority queue with " + x + " priority levels:"
 address = "priority-demo-queue; {create: always, "
 address = address + "node:{x-declare: {auto-delete:True, "
 address = address + "arguments: {'qpid.priorities': "
 address = address + x + "}}}}"
 print address
 txpriority = ssn.sender(address)

 rx = ssn.receiver('nonpriority-demo-queue')
 rxpriority = ssn.receiver("priority-demo-queue")
 rxbrowse = ssn.receiver("priority-demo-queue; {mode: browse}")

 print "\nPress Enter to continue\n"
 x = raw_input()

 print "First message sent:"
 msg = Message("priority 1")
 msg.priority = 1
 tx.send(msg)
 txpriority.send(msg)
 print msg

 print "Second message sent:"
 msg = Message('priority 4')
 msg.priority = 4
 tx.send(msg)
 txpriority.send(msg)
 print msg

 print "\nPress Enter to continue\n"
 x = raw_input()
 print "BROWSE PRIORITY QUEUE"
 print "First browse in priority queue:"
 print rxbrowse.fetch()

 print "Second browse in priority queue:"
 print rxbrowse.fetch()

 print "\nPress Enter to continue\n"
 x = raw_input()

 print "ACQUIRE PRIORITY QUEUE"
 print "First message in priority queue:"
 print rxpriority.fetch()

Chapter 6. Advanced Queue Features

87

When run, this program allows you to create a priority queue with 2 or 10 priority levels. It then
sends two messages to this queue, with priorit ies 1 and 4. It then demonstrates the behavior
of browsing and acquiring from the priority queue, and contrasts this with acquiring from a non-
priority queue.

Here is the output when the program is run and a priority queue with 10 dist inct priority levels is
created:

Create queue with 2 or 10 priority levels?
10
Creating a priority queue with 10 priority levels:
priority-demo-queue; {create: always, node:{x-declare: {auto-delete:True,
arguments: {'qpid.priorities': 10}}}}

The queue is declared as auto-delete: True to allow the program to be run mult iple t imes
with different values for qpid.priorities. If the queue already exists when the sender is
created, the value given for qpid.priorities has no effect. This value only has an effect when
the queue is created.

First message sent:
Message(priority=1, content='priority 1')
Second message sent:
Message(priority=4, content='priority 4')

Two messages are sent, one with priority 1 (the lowest priority), and one with priority 4 (a
higher priority).

The first examination is of a browsing receiver. Priority queuing has no effect for browsers, only
acquiring consumers, so we see our messages in the order they were sent - FIFO First In, First
Out:

BROWSE PRIORITY QUEUE
First browse in priority queue:
Message(priority=1, properties={'x-amqp-0-10.routing-key': u'priority-demo-
queue'}, content='priority 1')
Second browse in priority queue:
Message(priority=4, properties={'x-amqp-0-10.routing-key': u'priority-demo-
queue'}, content='priority 4')

However, when we acquire the messages from the priority queue, we see that they are
dequeued in order of descending priority - our priority 4 message is delivered before the
priority 1 message, even though it was sent later:

 print "Second message in priority queue:"
 print rxpriority.fetch()

 print "\nPress Enter to continue\n"
 x = raw_input()

 print "ACQUIRE NON-PRIORITY QUEUE"
 print "First message in non-priority queue:"
 print rx.fetch()

 print "Second message in non-priority queue:"
 print rx.fetch()

 ssn.acknowledge()
finally:
 connection.close()

Red Hat Enterprise MRG 2 Messaging Programming Reference

88

Report a bug

ACQUIRE PRIORITY QUEUE
First message in priority queue:
Message(priority=4, properties={'x-amqp-0-10.routing-key': u'priority-demo-
queue'}, content='priority 4')
Second message in priority queue:
Message(priority=1, properties={'x-amqp-0-10.routing-key': u'priority-demo-
queue'}, content='priority 1')

Finally, for contrast, the messages are dequeued from a non-priority queue, where they are
delivered in the order they were received by the broker:

ACQUIRE NON-PRIORITY QUEUE
First message in non-priority queue:
Message(priority=1, properties={'x-amqp-0-10.routing-key': u'nonpriority-demo-
queue'}, content='priority 1')
Second message in non-priority queue:
Message(priority=4, properties={'x-amqp-0-10.routing-key': u'nonpriority-demo-
queue'}, content='priority 4')

When the demonstrat ion is run and a priority queue with only 2 dist inct levels is select, you will
observe that the priority queue delivers the message in the same order they were delivered:

Create queue with 2 or 10 priority levels?
2
Creating a priority queue with 2 priority levels:
priority-demo-queue; {create: always, node:{x-declare: {auto-delete:True,
arguments: {'qpid.priorities': 2}}}}

....

ACQUIRE PRIORITY QUEUE
First message in priority queue:
Message(priority=1, properties={'x-amqp-0-10.routing-key': u'priority-demo-
queue'}, content='priority 1')
Second message in priority queue:
Message(priority=4, properties={'x-amqp-0-10.routing-key': u'priority-demo-
queue'}, content='priority 4')

When a queue has only two dist inct priority levels, those levels are the message priority bands
1-5 and 6-10. Since our messages both have priorit ies in the band 1-5, they are considered to
have the same priority, and are delivered based on the order they were received by the broker.

6.6.5. Fairshare Feature
When using a priority queue, a velocity mismatch between message producers and consumers
can result in lower priority messages remaining in the queue indefinitely. To ensure that
messages of all priorit ies are serviced, the fairshare feature can be used to grab a
predetermined number of messages for each priority level.

The x-qpid-fairshare argument of x-declare: argument can be used to enforce either a
common number of messages to be grabbed per-priority-level, or a custom number of
messages per-priority-level

The following example creates a queue with 10 priority levels, and will grab 5 messages from
each priority in turn:

qpid-config add queue 'my-queue; {create: always, node:{x-
declare:{arguments:{qpid.priorities:10, x-qpid-fairshare: 5}}}}'

The following example creates a queue with 10 priority levels, with custom fairshare amounts

Chapter 6. Advanced Queue Features

89

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10779-260401+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Priority+Queue+Demonstration&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

per-priority-level:

qpid-config add queue 'my-queue; {create: always, node:{x-
declare:{arguments:{qpid.priorities:10, x-qpid-fairshare-0: 3, x-qpid-fairshare-1:
5, x-qpid-fairshare-2: 3, x-qpid-fairshare-3: 2, x-qpid-fairshare-4: 4, x-qpid-
fairshare-5: 5, x-qpid-fairshare-6: 5, x-qpid-fairshare-7: 3, x-qpid-fairshare-8:
5, x-qpid-fairshare-9: 4, x-qpid-priorities: 10}}}}'

6.7. Message Groups

6.7.1. Message Groups
Message Groups allow a sender to indicate that a group of messages should all be handled by
the same consumer. The sender sets the header of messages to identify them as part of the
same group, then sends the messages to a queue that has message grouping enabled.

The broker ensures that a single consumer gets exclusive access to the messages in a group,
and that the messages in a group are delivered and re-delivered in the order they were
received.

Note that Message Grouping cannot be used in conjunction with Last Value Queue or Priority
Queuing.

The implementation of Message Groups is described in a specificat ion attached to its feature
request: QPID-3346: Support message grouping with strict sequence consumption across
mult iple consumers.

6.7.2. Create a Queue with Message Groups enabled
To create a queue with message groups enabled, specify values for qpid.group_header_key
and qpid.shared_msg_group in the queue creation arguments.

The qpid.group_header_key is the header key that will be used to match messages on.
Messages with the same value for this key in their header belong to the same group.

qpid.shared_msg_group should be set to 1.

The following example creates an auto-delet ing queue that uses the header field "msgGroupID"
to group messages:

Python

groupedSender = session.sender("my-grouped-msg-queue; {create: always, node:
{x-declare: {auto-delete: True, arguments: {'qpid.group_header_key':
'msgGroupID', 'qpid.shared_msg_group': 1}}}}")

C++

groupedSender = session.createSender("my-grouped-msg-queue; {create:always,
node: {x-declare: {auto-delete: True, arguments:
{'qpid.group_header_key':'msgGroupID', 'qpid.shared_msg_group':1}}}}")

Red Hat Enterprise MRG 2 Messaging Programming Reference

90

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8402-188868+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Fairshare+Feature&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://issues.apache.org/jira/secure/attachment/12485647/msg_groups_0.2.txt
https://issues.apache.org/jira/browse/QPID-3346
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8226-319298+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Message+Groups&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Report a bug

6.7.3. Message Group Consumer Requirements
The correct handling of group messages is the responsibility of both the broker and the
consumer. When a consumer fetches a message that is part of a group, the broker makes that
consumer the owner of that message group. All of the messages in that group will be visible
only to that consumer until the consumer acknowledges receipt of all the messages it has
fetched from that group. When the consumer acknowledges all the messages it has fetched
from the group, the broker releases its ownership of the group.

The consumer should acknowledge all of the fetched messages in the group at once. The
purpose of message grouping is to ensure that all the messages in the group are dealt with by
the same consumer. If a consumer takes grouped messages from the queue, acknowledges
some of them and then disconnects due to a failure, the unacknowledged messages in the
group will be released and become available to other consumers. However, the acknowledged
messages in the group have been removed from the queue, so now part of the group is
available on the queue with the header redelivered=True, and the rest of the group is missing.

For this reason, consuming applicat ions should be careful to acknowledge all grouped messages
at once.

6.7.4. Configure a Queue for Message Groups using
qpid-config
This example qpid-config command creates a queue called "MyMsgQueue", with message
grouping enabled and using the header key "GROUP_KEY" to identify message groups.

qpid-config add queue MyMsgQueue --group-header="GROUP_KEY" --shared-groups

6.7.5. Create a Queue with Message Groups enabled
To create a queue with message groups enabled, specify values for qpid.group_header_key
and qpid.shared_msg_group in the queue creation arguments.

The qpid.group_header_key is the header key that will be used to match messages on.
Messages with the same value for this key in their header belong to the same group.

qpid.shared_msg_group should be set to 1.

The following example creates an auto-delet ing queue that uses the header field "msgGroupID"
to group messages:

Python

groupedSender = session.sender("my-grouped-msg-queue; {create: always, node:
{x-declare: {auto-delete: True, arguments: {'qpid.group_header_key':
'msgGroupID', 'qpid.shared_msg_group': 1}}}}")

C++

groupedSender = session.createSender("my-grouped-msg-queue; {create:always,
node: {x-declare: {auto-delete: True, arguments:
{'qpid.group_header_key':'msgGroupID', 'qpid.shared_msg_group':1}}}}")

Chapter 6. Advanced Queue Features

91

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8227-319298+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Create+a+Queue+with+Message+Groups+enabled&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8228-319298+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Message+Group+Consumer+Requirements&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8231-319298+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Configure+a+Queue+for+Message+Groups+using+qpid-config&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Report a bug

6.7.6. Default Group
All messages arriving to a queue with message groups enabled with no group identifier in their
header are considered to belong to the same "default" group. This group is qpid.no-group. If a
message cannot be assigned to any other group, it is assigned to this group.

6.7.7. Override the Default Group Name
When a queue has message groups enabled, messages are grouped based on a match with a
header field. Messages that have no match in their headers for a group are assigned to the
default group. The default group is preconfigured as qpid.no-group. You can change this
default group name by supplying a value for the default-message-group configuration
parameter to the broker at start-up. For example, using the command line:

qpidd --default-message-group "EMPTY-GROUP"

6.7.8. Message Groups Demonstration
The following Python program demonstrates the use and behavior of message groups. To run
this program, copy and paste the code into a text file and save it as message-groups.py, then
run it using Python on a machine with the messaging broker started.

The program creates an auto-delet ing queue with messaging enabled or disabled, then sends
messages to the queue with a message group header that matches the group header for the
queue. When messaging is enabled it demonstrates how consumers are given ownership of a
message group by the broker, and how this affects what they see and do not see on the
queue. It also demonstrates how consumers release ownership of a group by acknowledging all
the messages they have fetched from that group, and how group ownership is not released by
part ially acknowledging the fetched messages.

The program uses two different connections to simulate two consumers, who would usually be
running as separate processes, perhaps on different machines.

Python

Red Hat Enterprise MRG 2 Messaging Programming Reference

92

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8227-319298+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Create+a+Queue+with+Message+Groups+enabled&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8230-319298+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Default+Group&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8229-319298+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Override+the+Default+Group+Name&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

import sys
from qpid.messaging import *

def sendmsg(group, num):
send the message to the broker and add it to our in-memory representation of
the broker queue
 global memoryqueue
 global tx

 msg = Message(group + num)
 msg.properties = {'ourGroupID': group}

 tx.send(msg)
 memoryqueue.append(group + num)

def pullmsg(consumer):
fetch a message from the broker and print it to the console
 global counter
 global memoryqueue

 msg = consumers[consumer - 1].fetch(timeout = 1)

 print "\nQueued message: " + memoryqueue[counter]
 print "Consumer " + str(consumer) + " got: " + msg.content

 counter +=1
 return msg

Two connections are used to simulate two distinct consumers
connection = Connection("localhost:5672")
connection2 = Connection("localhost:5672")
connection.open()
connection2.open()

try:
 session = connection.session()
 session2 = connection2.session()

 x = raw_input('Enable message grouping [Y/n]?')

 if x == 'N' or x == 'n':

 # Create the queue without message groups
 tx = session.sender("test-nogroup-queue; {create: always, node:{x-
declare:{auto-delete:True}}}")
 rx1 = session.receiver("test-nogroup-queue")
 rx2 = session2.receiver("test-nogroup-queue")

 print "\nMessage grouping is disabled"
 msggroup = False

 else:

 # Create the queue with message groups enabled
 tx = session.sender("test-group-queue; {create: always, node:{x-
declare:{auto-delete: True, arguments: {'qpid.group_header_key': 'ourGroupID',
'qpid.shared_msg_group' : 1}}}}")
 rx1 = session.receiver("test-group-queue")
 rx2 = session2.receiver("test-group-queue")

 print "\nMessage grouping is enabled"
 msggroup = True

Put the receivers in an array so we can use a function to fetch messages

Chapter 6. Advanced Queue Features

93

 consumers = []
 consumers.append(rx1)
 consumers.append(rx2)

 print "Sending interleaved messages from two different groups to the
queue..."

We create an in-memory picture of the queue, to see what order the messages
are on the broker
 memoryqueue = []

 sendmsg('A', '1')
 sendmsg('B', '1')
 sendmsg('B', '2')
 sendmsg('A', '2')
 sendmsg('B', '3')
 sendmsg('A', '3')

 counter = 0
 pullmsg(1)
 pullmsg(2)

 if msggroup:
 print "\nConsumer 1 now owns message group A. Consumer 2 now owns message
group B."

 msgc1 = pullmsg(1)
 msgc2 = pullmsg(2)

 if msggroup:
 print "\nThe consumers will now acknowledge all the messages, or only the
last one."
 resp = raw_input('Should they acknowlege all messages? [Y/n]')

 if resp == 'N' or resp == 'n':
 print "\nAcknowledging only part of the group. The consumers retain
ownership of the group. This is an anti-pattern! See the source code comments
for details."

 session.acknowledge(msgc1)
 session2.acknowledge(msgc2)
 antipattern = True

 # Acknowledging only part of a group is an anti-pattern. Messages are
grouped to ensure that a single consumer can deal with the whole group. If this
consumer now fails before completing the rest of the group, the unacknowledged
messages in the group will be released and redelivered by the broker, but the
acknowledged messages in the group are now missing in action!

 else:
 print "\nAcknowledging all fetched messages. The consumers will release
ownership of the groups."
 session.acknowledge()
 session2.acknowledge()
 antipattern = False

 print "\nPulling more messages from the queue:"

 pullmsg(1)
 pullmsg(2)
 if msggroup:
 if antipattern == False:
 print "\nConsumer 1 now owns message group B. Consumer 2 now owns
message group A."

Red Hat Enterprise MRG 2 Messaging Programming Reference

94

Example program output

The program sends messages from two different Groups - A and B - to a queue. Here is an
example of the output when message groups are disabled:

$ python message-groups.py
Enable message grouping [Y/n]?n

Message grouping is disabled
Sending interleaved messages from two different groups to the queue...

Queued message: A1
Consumer 1 got: A1

Queued message: B1
Consumer 2 got: B1

Queued message: B2
Consumer 1 got: B2

Queued message: A2
Consumer 2 got: A2

Queued message: B3
Consumer 1 got: B3

Queued message: A3
Consumer 2 got: A3

Queued message: B4
Consumer 1 got: B4

Queued message: B5
Consumer 2 got: B5

Queued message: A4
Consumer 1 got: A4

Queued message: A5
Consumer 2 got: A5

The consumers are pulling messages from the queue in a round-robin fashion, and they see the
messages on the queue in the order the messages were sent there.

Running the program with message groups enabled demonstrates how message groups
influence how consumers see the messages on the queue:

 print "\nSending some more messages to the queue..."

 sendmsg('B', '4')
 sendmsg('B', '5')
 sendmsg('A', '4')
 sendmsg('A', '5')

 pullmsg(1)
 pullmsg(2)
 pullmsg(1)
 pullmsg(2)

finally:
 connection.close()
 connection2.close()

Chapter 7. Asynchronous Messaging

95

$ python message-groups.py
Enable message grouping [Y/n]?y

Message grouping is enabled
Sending interleaved messages from two different groups to the queue...

Queued message: A1
Consumer 1 got: A1

Queued message: B1
Consumer 2 got: B1

Consumer 1 now owns message group A. Consumer 2 now owns message group B.

Queued message: B2
Consumer 1 got: A2

Queued message: A2
Consumer 2 got: B2

At this point of the program you can choose to acknowledge all of the acquired messages, or
only some of them. Acknowledging all of the messages that have been acquired so far releases
ownership of the group, and the next messages that the consumers see will be the next
messages on the queue:

The consumers will now acknowledge all the messages, or only the last one.
Should they acknowlege all messages? [Y/n]y

Acknowledging all fetched messages. The consumers will release ownership of the
groups.

Pulling more messages from the queue:

Queued message: B3
Consumer 1 got: B3

Queued message: A3
Consumer 2 got: A3

They will then take ownership of the groups of those messages:

Consumer 1 now owns message group B. Consumer 2 now owns message group A.

Sending some more messages to the queue...

Queued message: B4
Consumer 1 got: B4

Queued message: B5
Consumer 2 got: A4

Queued message: A4
Consumer 1 got: B5

Queued message: A5
Consumer 2 got: A5

If you instead choose to acknowledge only the last message, rather than all the acquired
messages in the group, then the program will warn you that this is an anti-pattern, and
demonstrate that the consumers retain ownership of the group:

Red Hat Enterprise MRG 2 Messaging Programming Reference

96

Report a bug

The consumers will now acknowledge all the messages, or only the last one.
Should they acknowlege all messages? [Y/n]n

Acknowledging only part of the group. The consumers retain ownership of the group.
This is an anti-pattern! See the source code comments for details.

Pulling more messages from the queue:

Queued message: B3
Consumer 1 got: A3

Queued message: A3
Consumer 2 got: B3

Sending some more messages to the queue...

Queued message: B4
Consumer 1 got: A4

Queued message: B5
Consumer 2 got: B4

Queued message: A4
Consumer 1 got: A5

Queued message: A5
Consumer 2 got: B5

Chapter 7. Asynchronous Messaging

97

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10139-374801+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Message+Groups+Demonstration&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Chapter 7. Asynchronous
Messaging
7.1. Asynchronous Operations
Asynchronous operations allows some communication with the broker to take place in the
background, while your program continues to execute. When send and receive operations are
performed synchronously execution is blocked while communication takes place between the
client and the broker.

Asynchronous send allow execution to continue without wait ing on acknowledgement from the
server. Asynchronous receive enables receivers to retrieve messages in the background, so
that when you wish to retrieve a message using a receiver in your code, the message has
already been fetched and is available locally.

Asynchronous operations significantly improve throughput; but you should understand the
behavior of asynchronous operations and carefully manage it in your code.

7.2. Asynchronous Sending

7.2.1. Synchronous and Asynchronous Send
When a sender sends synchronously over a reliable link, execution in the sender's thread is
blocked until the sender receives an acknowledgement from the broker. This is useful for
test ing and troubleshooting, but by introducing a round-trip for every message, this reduces
the potential throughput of the system.

When using the C++ API, all calls are asynchronous by default . When using the Python API,
however, the opposite is true - by default , a sender sends a message synchronously.

You can send messages asynchronously, which allows you to maximise your network bandwidth
usage and throughput. When invoked asynchronously, a send call will return immediately,
without wait ing for a receipt from the broker.

For example, the following call to the send() method of a send object is asynchronous - it
returns immediately, without wait ing for a receipt from the broker:

Python

sender.send(message, sync = False)

C++

sender.send(message, false)

Note that this is the default behavior for the C++ API.

Red Hat Enterprise MRG 2 Messaging Programming Reference

98

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10272-178794+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Asynchronous+Operations&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8100-261256+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Synchronous+and+Asynchronous+Send&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

7.2.2. Sender Capacity
Sender capacity is the property of a sender object that controls the number of asynchronous
sends pending acknowledgement from the server that the sender will permit. These
unacknowledged messages are buffered in memory for retransmission in the event of a link
failure, so the sender capacity is also known as the sender replay buffer size.

By default , sender capacity is set to UNLIMITED, meaning that the sender will allow an unlimited
number of asynchronous calls to be made, and buffer a number of messages that is limited only
by the memory limits of the system.

When the sender capacity is set to a number other than UNLIMITED, the sender will allow only
that many asynchronous send operations to be outstanding at the same t ime.

For example: if a sender's capacity is set to 10, then a maximum of 10 asynchronous send
operations can be await ing acknowledgement at the same t ime for the sender. If 10
asynchronous send operations are invoked, and an 11th operation is attempted before any of
those 10 are acknowledged by the broker, then the sender will block until one of the
asynchronous send operations is acknowledged by the broker.

Be aware of two things: unbounded sender capacity can have an impact on resources if your
sender outpaces the server significantly. Be aware also that upon reaching its capacity a
sender will switch from asynchronous to synchronous send behavior, and message sends will
block. You should tune your sender capacity with this in mind, and also carefully program your
send operations to check the sender's capacity and availability if blocking will be problematic.

7.2.3. Set Sender Capacity
In Python, the sender capacity is set by assigning a value to the capacity property of a
sender. In C++, the sender capacity is set using the setCapacity method.

7.2.4. Query Sender Capacity
When using asynchronous message sending, three sender propert ies are available to ascertain
the state of the asynchronous calls. They are:

Sender Capacity
The maximum number of asynchronously sent messages that can be pending
acknowledgement at any given t ime. By default this is UNLIMITED, but it can be changed to
constrain the number of unsett led asynchronous calls. An attempt to make a further
asynchronous call when the sender is at capacity will block until another sent message is
acknowledged by the broker.

Python

sender.capacity = 20

C++

sender.setCapacity(20)

C++

Chapter 7. Asynchronous Messaging

99

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8026-171102+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Sender+Capacity&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
http://qpid.apache.org/apis/0.14/cpp/html/a00319.html#a18601272c6638a15a383d8c8b620f50b
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8124-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Set+Sender+Capacity&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Sender Unsettled
The number of asynchronous sends pending acknowledgement from the broker.

Sender Available
The number of addit ional asynchronous calls that the sender can accept at the moment.
This value is available as a property, but can also be computed from sender.capacity -
sender.unsettled.

7.2.5. Avoiding a Blocked Asynchronous Send
An asynchronous send call will place the message into the send buffer and return to execution
immediately. However, if the send buffer is full the call will block until space is available.

If you need to ensure that an asynchronous send call does not block on a full buffer, you should
query the buffer state before making the call. For example, in C++:

sender.getCapacity()

Python

sender.capacity

C++

sender.getUnsettled()

Python

sender.unsettled()

C++

sender.getAvailable()

Python

sender.available()

C++

 if (sender.getAvailable() > 0)
 sender.send(message, false)
 // else drop the message

Python

Red Hat Enterprise MRG 2 Messaging Programming Reference

100

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8054-261262+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Query+Sender+Capacity&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

You can also increase the size of the sender's replay buffer to reduce the chances of it filling
up:

7.2.6. Asynchronous Message Sending Example
The following code demonstrates using the propert ies of a sender to manage asynchronous
send operations, with the option to avoid synchronous blocking when the sender is at capacity:

if sender.available() > 0:
 sender.send(message, sync=False)
else:
 # drop the message

C++

sender.setCapacity(SOME_LARGE_NUMBER)

Python

sender.capacity = SOME_LARGE_NUMBER

C++

sender.setCapacity(MY_CAPACITY);

// Later
bool resend = true;
while (resend)
{
 if (sender.getAvailable()>0)
 {
 sender.send(message,false);
 resend = false;
 }
 else
 {
 // May wish to do nothing here
 // or send to log file
 std::cout << "Warning: Capacity \ full. Retry" << std::endl;
 }
}
// Later
if (sender.getUnsettled())
{
 session.sync();
}

Python

Chapter 7. Asynchronous Messaging

101

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8381-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Avoiding+a+Blocked+Asynchronous+Send&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

7.2.7. Asynchronous Send and Link Reliability
The sender.capacity is the number of unacknowledged sends that a sender will allow when
sending asynchronously. The two-phase send/acknowledge behavior is a characterist ic of a
reliable link (technically known as a link with at-least-once reliability). The sender sends a
message, and buffers that message locally until the server responds to acknowledge receipt
of the message. This buffering of unacknowledged sent messages enables the sender to
resend messages (sender replay) if the link is dropped and then re-established. When a reliable
link is dropped and then transparently re-established, messages that were sent
asynchronously but not acknowledged by the server are resent from the sender replay buffer.

A reliable link is the default link used when creating a sender with no explicit link reliability
specified. You can explicit ly request an unreliable link when creating a sender. For example:

When using an unreliable link, sender capacity has no meaning. On an unreliable link the server
does not acknowledge receipt of messages. All messages are considered as good as
acknowledge once they are sent. This is the meaning of unreliable for a sender. If the link is
dropped there is no way for the sender to know which messages made it to the broker and
which were lost. This also means that over an unreliable link asynchronous senders will not
block, as their capacity is never ut ilized.

Sender.capacity is used to limit the exposure of an applicat ion to data loss, and the amount
of memory that senders can consume with their replay buffer. It can also be used to thrott le
producers. You can use an unreliable link along with asynchronous send to maximise throughput
without the implicat ions of local memory required for the sender replay buffer, and no thrott ling
of producers. However, you must be aware of the reduced reliability and employ this pattern in
situations where the potential for data loss is not important.

The following program demonstrates the difference between asynchronous sending over
reliable and unreliable links:

snd.capacity = MY_CAPACITY

Later

resend = True
while (resend):
 if (snd.available()>0):
 snd.send(msg, sync = False)
 resend = False
 else:
 print "Warning: Capacity full"

Later
 if (snd.unsettled()):
 ssn.sync()

Python

sender = session.sender("amq.topic;{link: {'reliability': 'unreliable'}}")

Python

Red Hat Enterprise MRG 2 Messaging Programming Reference

102

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8384-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Asynchronous+Message+Sending+Example&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

The program sends 1000 messages asynchronously over a link using a sender with a capacity of
5 unacknowledged messages. The output is:

message number : unacknowledged messages : further async send capacity

When run over a reliable link you will see the number of unacknowledged messages and the
remaining async send capacity vary, including occasions where the asynchronous sender will
block:

Use (R)eliable or (U)nreliable link [R/U]? R
...
918 : 1 : 4
919 : 2 : 3
920 : 3 : 2
921 : 4 : 1
922 : 5 : 0
Sender is blocking...

You can experiment with the value for sender.capacity (set to 5 in the program code) to see
the impact it has on sender blocking.

When run over an unreliable link, you will see that sender.capacity has no impact on the
performance of the sender. Remember, however, that it is now unreliable:

import sys
from qpid.messaging import *

connection = Connection("localhost:5672")

try:
 connection.open()
 session = connection.session()

 linktype=""
 while linktype != "R" and linktype !="U":
 response = raw_input("Use (R)eliable or (U)nreliable link [R/U]? ")
 linktype = response.upper()

 if linktype == "U":
 sender = session.sender("amq.topic;{link: {'reliability': 'unreliable'}}")
 else:
 sender = session.sender("amq.topic")

 message = Message("Hello World:")
 print sender.capacity
 sender.capacity = 5
 for x in range (1000):
 if sender.available() == 0:
 print "Sender is blocking..."
 sender.send("Hello World: " + str(x), sync=False)
 print str(x) +" : " + str(sender.unsettled()) + " : " +
str(sender.available())

except MessagingError,m:
 print m
finally:
 connection.close()

Chapter 8. Reliability and Quality of Service

103

Report a bug

Report a bug

Use (R)eliable or (U)nreliable link [R/U]? U
...
984 : 0 : 5
985 : 0 : 5
986 : 0 : 5
987 : 0 : 5
988 : 0 : 5
989 : 0 : 5

7.3. Asynchronous Receiving

7.3.1. Asynchronous Message Retrieval (Prefetch)
By default , a receiver retrieves a single message synchronously in response to a fetch() call.
The receiver's capacity to prefetch messages is 0 by default .

When the receiver's capacity is set to a value greater than 0, the receiver will asynchronously
retrieve up to that number of messages from the queue. This asynchronous retrieval is called
prefetch, and it is enabled and controlled by sett ing the capacity property of a receiver.

Prefetching messages has two advantages:

Prefetched messages are available locally when requested by the applicat ion, without the
overhead of a synchronous call to retrieve a message from the broker.
A receiver with prefetching enabled has an available() method that can be invoked to
determine how many prefetched messages are available.

Note two things about the available() method:

Prefetching is asynchronous, which means that you cannot rely on the number returned by a call
to available() as an absolute indicator of the state of the queue. For example, calling
available() immediately after sett ing the capacity of a receiver to something other than 0 is
likely to return a value of 0 messages available. This does not necessarily mean that the queue
has no messages, but rather than no pre-fetched messages are locally available yet.

Note also that the maximum value reported by the available method of a receiver with
prefetching enabled will be the capacity of the receiver. The available() method reports
the number of prefetched messages available, not the number of messages in the queue. If
the number of available messages is less than the capacity of the receiver, however, you can
infer that this is the number of messages in the queue, with the above caveat about the
asynchronous nature of prefetching.

7.3.2. Enable Receiver Prefetch
To enable a receiver to prefetch messages, set its capacity to a value greater than 0.

For example, the following code creates a receiver and enables prefetching of up to 100
messages:

Python

Red Hat Enterprise MRG 2 Messaging Programming Reference

104

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10136-171122+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Asynchronous+Send+and+Link+Reliability&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8112-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Asynchronous+Message+Retrieval+%28Prefetch%29&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

7.3.3. Asynchronously Acknowledging Received
Messages
A reliable link (technically called a link with at-least-once reliablity) is the default link used when a
receiver is created without specifying a link reliability. For message acknowledgement on
unreliable links refer to Acknowledging Messages Received Over an Unreliable Link. Messages
received over a reliable link are set to acquired on the broker until they are acknowledged by
the consumer. When a message is in acquired mode it is not visible in the queue. If the
consumer disconnects without acknowledging receipt, the message will be moved out of
acquired and again become available to consumers, with the header redelivered=true.

To remove the message from the queue, a consumer needs to acknowledge receipt of the
message.

In Python, this is done by calling the acknowledge() method of the session object:

Calling the acknowledge() method with no arguments acknowledges receipt of all as-yet-
unacknowledged messages fetched using that session. To acknowledge a specific message,
pass the message as an argument. For example:

This method executes synchronously by default , and will wait for the broker to respond before
returning. It can also be invoked asynchronously, by supplying the sync = False parameter:

Acknowledging Messages Received Over an Unreliable Link

When an unreliable link is requested for a receiver, acknowledgement is implicit when a
message is fetched. This means that the broker marks the message as acquired as soon as
the receiver fetches it . No acknowledgement is necessary, and no release or reject ion of
messages is possible.

import sys
from qpid.messaging import *

connection = Connection("localhost:5672")
connection.open()
ssn = connection.session()

prefetchingReceiver = ssn.receiver("testqueue; {create:always}");
prefetchingReceiver.capacity = 100

Python

session.acknowledge()

Python

msg = rx.fetch(timeout = 1)
session.acknowledge(msg)

Python

session.acknowledge(msg, sync = False)

Chapter 8. Reliability and Quality of Service

105

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8048-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Enable+Receiver+Prefetch&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

7.3.4. Asynchronous Receive and Link Reliability
Bear in mind that the combination of asynchronous receive (prefetch) and an unreliable link is
a potentially lossy situation. Over an unreliable link, when an applicat ion is consuming (as
opposed to browsing the queue) the broker deletes the message from the queue as soon as it
is prefetched. It does not wait for acknowledgement from the consumer. If the consumer fails
before it dispatches prefetched messages, the broker will not redeliver them.

When using this combination - asynchronous receive (prefetch) and unreliable link - be aware
of the implicat ions.

Red Hat Enterprise MRG 2 Messaging Programming Reference

106

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8157-176945+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Asynchronously+Acknowledging+Received+Messages&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10257-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Asynchronous+Receive+and+Link+Reliability&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Chapter 8. Reliability and
Quality of Service
8.1. Link Reliability

8.1.1. Reliable Link
The link established when connecting to a queue is reliable by default . Technically, this is at-
least-once reliability.

Receiving messages over a reliable link

An acquiring message consumer (also known as a competing message consumer) is a message
consumer who removes messages from a queue, and makes them unavailable to other
consumers. When an acquiring message consumer fetches a message from the broker over a
reliable link, the message is set to acquired. In the acquired state the message is not visible
to other consumers. It is to all intents and purposes acquired by the consumer, but the broker
maintains its copy in acquired state until the consumer acknowledges acquisit ion. At that point
the broker considers the message reliably delivered, and will delete its copy.

The reliable link enables several behaviors. If a consumer closes its connection to the server
without acknowledging the message, the broker will assume that the consumer has failed. In
this case the acquired message is returned to the queue, with a header redelivered: true.

Addit ionally, the consumer may choose to explicit ly release the message, in which case the
broker will perform the same action; or the consumer may choose to reject the message.
When a message is rejected, the broker will route the message to the alternate exchange, if
one has been configured for this queue or exchange. If no alternate exchange is configured,
the message will be discarded.

Sending messages over a reliable link

When a message is sent to the broker over a reliable link, the sender maintains its local copy
until the broker acknowledges receipt. At that t ime the sender deletes the local copy. When
sending synchronously this causes the applicat ion to block until this exchange has taken place.
When sending asynchronously these unacknowledged sent messages are stored in the sender
replay buffer.

When a reliable link is dropped momentarily and then re-established, the sender will resend
unacknowledged messages from its buffer, ensuring that no data is lost. This may result in
messages being sent more than once, hence the term at-least-once.

Specifying a reliable link

All links to queues are reliable by default . It is not necessary to explicit ly request a reliable link
when connecting to a queue.

When connecting to an exchange the link is unreliable by default . To specify a reliable link to an
exchange, include link: {'reliability': 'at-least-once'} in the address. For example:

sender = session.sender("amq.topic;{link: {'reliability': 'at-least-once'}}")

In this case, the sender will follow the reliable link behavior, buffering messages locally until they
are acknowledged by the broker.

Chapter 8. Reliability and Quality of Service

107

Report a bug

Report a bug

8.1.2. Unreliable Link
The link established when connecting to an exchange is unreliable by default . Addit ionally, an
applicat ion can explicit ly request an unreliable link when establishing a connection to a queue.

An unreliable link sends data fast and loose. There is no buffering either on the server or on the
local client to guard against lost connections. When a client takes a message from a queue
over an unreliable link, the broker deletes it immediately, without wait ing for the consumer
to acknowledge that it received and successfully act ioned a message.

In some scenarios you may see an increase in throughput when using an unreliable link,
although this is be no means certain. The most obvious use for an unreliable link is when a large
volume of data is being transmitted at high speed and data loss is not an issue.

Most applicat ions benefit from the guarantees provided by the reliable link, and it is the default
for all links.

Requesting an unreliable link

To request an unreliable link, specify link: {'reliability': 'unreliable'} in the
address for the receiver or sender. For example:

8.2. Queue Sizing

8.2.1. Controlling Queue Size
Controlling the size of queues is an important part of performance management in a messaging
system.

When queues are created, you can specify a maximum queue size (qpid.max_size) and
maximum message count (qpid.max_count) for the queue.

qpid.max_size is specified in bytes. qpid.max_count is specified as the number of messages.

The following qpid-config creates a queue with a maximum size in memory of 200MB, and a
maximum number of 5000 messages:

qpid-config add queue my-queue --max-queue-size=204800000 --max-queue-count 5000

In an applicat ion, the qpid.max_count and qpid.max_size direct ives go inside the arguments of
the x-declare of the node. For example, the following address will create the queue as the
qpid-config command above:

Python

sender = session.sender("amq.topic;{link: {'reliability': 'unreliable'}}")

Python

tx = ssn.sender("my-queue; {create: always, node: {x-declare: {'auto-delete':
True, arguments:{'qpid.max_count': 5000, 'qpid.max_size': 204800000}}}}")

Red Hat Enterprise MRG 2 Messaging Programming Reference

108

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10274-319226+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Reliable+Link&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10273-167248+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Unreliable+Link&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Note that the qpid.max_count attribute will only be applied if the queue does not exist when
this code is executed.

Behavior when limits are reached: qpid.policy_type

The behavior when a queue reaches these limits is configurable. By default , on non-durable
queues the behavior is reject: further attempts to send to the queue result in a
TargetCapacityExceeded exception being thrown at the sender.

The configurable behavior is set using the qpid.policy_type option. The possible values are:

reject
Message publishers throw an exception TargetCapacityExceeded. This is the default
behavior for non-durable queues.

flow-to-disk
Content of messages that exceed the limit are removed from memory and held on disk.
Header and other information needed to track the message state on the queue is retained
in memory. This policy makes sense when the message body is significant larger than the
headers. Note that the messages stored to disk are not persistent unless the queue is a
durable queue and the message is marked persistent.

ring
The oldest messages are removed to make room for newer messages.

ring-strict
Similar to the ring policy, but will not remove messages that have not yet been accepted
by a client. If the limit is exceeded and the oldest message has not been accepted, the
publisher will receive an exception.

The following example qpid-config command sets the limit policy to ring-strict:

qpid-config add queue my-queue --max-queue-size=204800 --max-queue-count 5000 --
limit-policy ring-strict

The same thing is achieved in an applicat ion like so:

See Also:

Section 8.3, “Producer Flow Control”

8.2.2. Queue Threshold Alerts
Queue Threshold Alerts are issued by the broker when a queue with a capacity limit set (either
qpid.max_size or qpid.max_count) approaches 80% of its limit . The figure of 80% is
configurable across the server using the broker option --default-event-threshold-ratio. If

Python

tx = ssn.sender("my-queue; {create: always, node: {x-declare: {'auto-delete':
True, arguments:{'qpid.max_count': 5000, 'qpid.max_size': 204800,
'qpid.policy_type: 'ring-strict'}}}}")

Chapter 8. Reliability and Quality of Service

109

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8170-370645+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Controlling+Queue+Size&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

you set this to zero, alerts are disabled for all queues by default . Addit ionally, you can override
the default alert threshold per-queue using qpid.alert_count and qpid.alert_size when
creating the queue.

The Alerts are sent via the QMF framework. You can subscribe to the alert messages by
listening to the address
qmf.default.topic/agent.ind.event.org_apache_qpid_broker.queueThresholdExceeded.#.
Alerts are sent as map messages.

The following code demonstrates subscribing to and consuming alert messages:

Alert Repeat Gap

To avoid alert message flooding, there is a 60 second gap between alert messages. This can
be overridden on a per-queue basis using the qpid.alert_repeat_gap to specify a different
value in seconds.

Backwards-compatible aliases

The following aliases are maintained for compatibility with earlier clients:

x-qpid-maximum-message-count is equivalent to qpid.alert_count
x-qpid-maximum-message-size is equivalent to qpid.alert_size
x-qpid-minimum-alert-repeat-gap is equivalent to qpid.alert_repeat_gap

8.3. Producer Flow Control

8.3.1. Flow Control
The broker implements producer flow control on queues that have limits set. This blocks
message producers that risk overflowing a destination queue. The queue will become
unblocked when enough messages are delivered and acknowledged.

Flow control relies on a reliable link between the sender and the broker. It works by holding off
acknowledging sent messages, causing message producers to reach their sender replay buffer
capacity and stop sending.

Queues that have been configured with a Limit Policy of type ring or ring-strict do not have
queue flow thresholds enabled. These queues deal with reaching capacity through the ring and
ring-strict mechanisms. All other queues with limits have two threshold values that are set

Python

conn = Connection.establish("localhost:5672")
session = conn.session()
rcv =
session.receiver("qmf.default.topic/agent.ind.event.org_apache_qpid_broker.queu
eThresholdExceeded.#")
while True:
 event = rcv.fetch()
 print "Threshold exceeded on queue %s" %
event.content[0]["_values"]["qName"]
 print " at a depth of %s messages, %s bytes" %
(event.content[0]["_values"]["msgDepth"],
event.content[0]["_values"]["byteDepth"])
 session.acknowledge()

Red Hat Enterprise MRG 2 Messaging Programming Reference

110

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8080-319298+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Queue+Threshold+Alerts&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Report a bug

ring-strict mechanisms. All other queues with limits have two threshold values that are set
by the broker when the queue is created:

flow_stop_threshold
the queue resource ut ilizat ion level that enables flow control when exceeded. Once
crossed, the queue is considered in danger of overflow, and the broker will cease
acknowledging sent messages to induce producer flow control. Note that either queue
size or message count capacity ut ilizat ion can trigger this.

flow_resume_threshold
the queue resource ut ilizat ion level that disables flow control when dropped below. Once
crossed, the queue is no longer considered in danger of overflow, and the broker again
acknowledges sent messages. Note that once trigger by either, both queue size and
message count must fall below this threshold before producer flow control is deactivated.

The values for these two parameters are percentages of the capacity limits. For example, if a
queue has a qpid.max_size of 204800 (200MB), and a flow_stop_threshold of 80, then the
broker will init iate producer flow control if the queue reaches 80% of 204800, or 163840 bytes
of enqueued messages.

When the resource ut ilizat ion of the queue falls below the flow_resume_threshold, producer
flow control is stopped. Sett ing the flow_resume_threshold above the flow_stop_threshold
has the obvious consequence of locking producer flow control on, so don't do it .

8.3.2. Queue Flow State
The flow control state of a queue can be determined by the flowState boolean in the queue's
QMF management object. When this is true flow control is act ive.

The queue's management object also contains a counter flowStoppedCount that increments
each t ime flow control becomes active for the queue.

8.3.3. Broker Default Flow Thresholds
The default flow Control Thresholds can be set for the broker using the following two broker
options:

--default-flow-stop-threshold = flow control act ivated at this percentage of capacity
(size or count)
--default-flow-resume-threshold = flow control de-act ivated at this percentage of
capacity (size or count)

For example, the following command starts the broker with flow control set to act ivate by
default at 90% of queue capacity, and deactivate when the queue drops back to 75%
capacity:

qpidd --default-flow-stop-threshold=90 --default-flow-resume-threshold=75

8.3.4. Disable Broker-wide Default Flow Thresholds
To turn off flow control on all queues on the broker by default , start the broker with the default

Chapter 8. Reliability and Quality of Service

111

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8175-327436+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Flow+Control&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8182-319298+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Queue+Flow+State&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8178-319298+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Broker+Default+Flow+Thresholds&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Report a bug

flow control parameters set to 100%:

qpidd --default-flow-stop-threshold=100 --default-flow-resume-threshold=100

8.3.5. Per-Queue Flow Thresholds
You can set specific flow thresholds for a queue using the following arguments:

qpid.flow_stop_size

integer flow stop threshold value in bytes.

qpid.flow_resume_size

integer flow resume threshold value in bytes.

qpid.flow_stop_count

integer flow stop threshold value as a message count.

qpid.flow_resume_count

integer flow resume threshold value as a message count.

To disable flow control for a specific queue, set the flow control parameters for that queue to
zero.

8.4. Credit-based Flow Control

8.4.1. Flow Control Using Credit
A subscriber can control the flow of messages from a subscribed queue by allocating credit to
the broker for a part icular number of messages or a total size of message content. As the
broker delivers messages it spends this credit by decrementing the message credit by one
and decrementing the size credit by the size of the content of the message. The broker
cannot send a message to a subscript ion for which it does not have sufficient credit .

8.4.2. Credit Allocation Modes
There are two modes of credit allocation defined by the AMQP specificat ion:

In credit mode, credit must be explicit ly re-issued by the subscriber before the broker can
recommence sending messages
In window mode, the credit is automatically reissued for received messages. In this mode,
the client indicates that a message has been received by informing the broker of the
completion of the transfer. Though completion is essentially a form of acknowledgment, it
should not be confused with acceptance which is an confirmation of ownership transfer.

In both modes, unlimited credit can be allocated for the message count and the total content
size.

Red Hat Enterprise MRG 2 Messaging Programming Reference

112

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8176-319298+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Disable+Broker-wide+Default+Flow+Thresholds&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8184-319298+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Per-Queue+Flow+Thresholds&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8242-189216+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Flow+Control+Using+Credit&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Report a bug

8.5. Durable Queues

8.5.1. Durable Queues
By default , the lifet ime of a queue is bound to the execution of the server process. When the
server shuts down the queues are destroyed, and need to be re-created when the broker is
restarted. A durable queue is a queue that is automatically re-established after a broker is
restarted due to a planned or unplanned shutdown.

When the server shuts down and the queues are destroyed, any messages in those queues are
lost. As well as automatic re-creation on server restart, durable queues provide message
persistence for messages that request it . Messages that are marked as persistent and sent
to a durable queue are stored and re-delivered when the durable queue is re-established after
a shutdown.

Note that not all messages sent to a durable queue are persistent - only those that are
marked as persistent. Note also that marking a message as persistent has no effect if it is
sent to a queue that is non-durable. A message must be marked as persistent and sent to a
durable queue to be persistent.

8.5.2. Persistent Messages
A persistent message is a message that must not be lost, even if the broker fails.

When a message is marked as persistent and sent to a durable queue, it will be written to disk,
and resent on restart if the broker fails or shutdowns.

Messages marked as persistent and sent to non-durable queues will not be persisted by the
broker.

Note that messages sent using the JMS API are marked persistent by default . If you are
sending a message using the JMS API to a durable queue, and do not wish to incur the overhead
of persistence, set the message persistence to false.

Messages sent using the C++ API are not persistent by default . To mark a message persistent
when using the C++ API, use Message.setDurable(true) to mark a message as persistent.

8.5.3. Create a durable queue in an application
The following example code creates a durable queue called "important-messages":

C++

Sender sender = session.createSender("important-messages; {create:always,
node:{durable: True})

Python

newqueue = session.sender("important-messages; {create:always, node:{durable:
True})

Chapter 9. Qpid Management Framework (QMF)

113

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8239-189223+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Credit+Allocation+Modes&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=6974-319298+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Durable+Queues&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=6991-319298+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Persistent+Messages&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Report a bug

Note that if a queue is declared durable and auto-delete, it is only durable until it gets auto-
deleted! Carefully consider if this is the behavior that you want.

8.5.4. Mark a message as persistent
A persistent message is a message that must not be lost even if the broker fails. To make a
message persistent, set the delivery mode to PERSISTENT. For instance, in C++, the following
code makes a message persistent:

message.getDeliveryProperties().setDeliveryMode(PERSISTENT);

If a persistent message is delivered to a durable queue, it is written to disk when it is placed on
the queue.

When a message producer sends a persistent message to an exchange, the broker routes it to
any durable queues, and waits for the message to be written to the persistent store, before
acknowledging delivery to the message producer. At this point, the durable queue has
assumed responsibility for the message, and can ensure that it is not lost even if the broker
fails. If a queue is not durable, messages on the queue are not written to disk. If a message is
not marked as persistent, it is not written to disk even if it is on a durable queue.

Table 8.1. Persistent Message and Durable Queue Disk States

A persistent message AND durable queue Written to disk
A persistent message AND non-durable
queue

Not written to disk

A non-persistent message AND non-durable
queue

Not written to disk

A non-persistent message AND durable
queue

Not written to disk

When a message consumer reads a message from a queue, it is not removed from the queue
until the consumer acknowledges the message (this is true whether or not the message is
persistent or the queue is durable). By acknowledging a message, the consumer takes
responsibility for the message, and the queue is no longer responsible for it .

8.5.5. Durable Message State After Restart
When a durable queue is re-established after a restart of the broker, any messages that were
marked as persistent and were not reliably delivered before the broker shut down are
recovered. The broker does not have information about the delivery status of these
messages. They may have been delivered but not acknowledged before the shutdown
occurred. To warn receivers that these messages have potentially been previously delivered,
the broker sets the redelivered flag on all recovered persistent messages.

Consuming applicat ions should treat the redelivered flag as a suggestion.

8.5.6. Message Journal
Red Hat Enterprise Messaging allows the size and number of files and caches used for
persistence to be configured. There is one journal for each queue; it records each enqueue,

Red Hat Enterprise MRG 2 Messaging Programming Reference

114

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=6976-188317+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Create+a+durable+queue+in+an+application&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=7065-319298+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Mark+a+message+as+persistent&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8397-319298+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Durable+Message+State+After+Restart&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Report a bug

dequeue, or transaction event, in order.

Each journal is implemented as a circular queue on disk, with a read cache and a write cache in
memory. On disk, each circular queue consists of a set of files. The caches are page-oriented.
When persistent messages are written to a durable queue, the associated events accumulate
in the write cache until a page is filled or a t imeout occurs, then the page is written to the
circular queue using AIO. Messages in the write cache have not yet been acknowledged to the
publisher, and can not be read by a consumer until they have been written to the journal. The
page size affects performance - smaller page sizes reduce latency, larger page sizes increase
throughput by reducing the number of write operations.

The journal files are prepared and formatted when the associated queue is first declared. This
doubles throughput with AIO on the first pass, and also guarantees that needed space is
allocated. However, this can result in a noticeable delay when durable queues are declared.
When file size is increased, the delay is greater.

8.5.7. Configure the Message Journal in an application
You can set the file count and file size of the message journal for a queue by specifying
qpid.file_size and qpid.file_count in the x-declare arguments of the address used to
create a queue:

8.6. Transactions

8.6.1. Transactions
Transactional sessions support message transactions - groups of messages whose
transmission must succeed or fail atomically. On a transactional session sent messages only
become available at the target address on commit. Likewise, received and acknowledged
messages are only discarded at their source on commit.

Note that transactions require a reliable link to function.

8.6.2. Transactions Example
The following code demonstrates transactional sessions:

Python

tx = ssn.sender("my-queue;{create: always, node: {durable: True, x-declare:
{arguments: {'qpid.file_size': 20, 'qpid.file_count': 12}}}}")

.NET/C#

Chapter 9. Qpid Management Framework (QMF)

115

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=6986-319298+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Message+Journal&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=6989-189238+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Configure+the+Message+Journal+in+an+application&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8073-327437+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Transactions&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Connection connection = new Connection(broker);
Session session = connection.createTransactionalSession();
...
if (smellsOk())
 session.Commit();
else
 session.Rollback();

C++

Connection connection(broker);
Session session = connection.createTransactionalSession();
...
if (smellsOk())
 session.commit();
else
 session.rollback();

Red Hat Enterprise MRG 2 Messaging Programming Reference

116

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8038-189267+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Transactions+Example&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Report a bug

Chapter 9. Qpid
Management Framework
(QMF)
9.1. QMF - Qpid Management Framework
The Qpid Management Framework allows the broker to be administered using command
messages. Command messages are map messages that are sent to the address
qmf.default.direct/broker where qmf.default.direct is the exchange, with a routing key
or subject of broker. The message should contain a reply-to address from which the sender
can receive responses.

9.2. QMF Versions
Red Hat Enterprise Messaging supports Qpid Management Framework version 2.

QMFv2 offers a number of benefits over QMFv1, including the ability to send QMF messages
between nodes in a cluster and across federated links.

For more information on QMFv2, refer to the Apache Qpid QMFv2 Project Page.

QMFv1 calls are possible in Red Hat Enterprise Messaging, but they are not recommended.
QMFv1 is deprecated and may be removed in a future release.

9.3. Creating Exchanges from an Application
You can use QMF messages to create exchanges from an applicat ion. The following QMF
message creates a fanout exchange called test-fanout

Message(subject='broker', reply_to='qmf.default.topic/direct.6da5bfc3-44fb-4441-
b834-6c5897b9606a;{node:{type:topic}, link:{x-declare:{auto-
delete:True,exclusive:True}}}', correlation_id='1', properties={'qmf.opcode':
'_method_request', 'x-amqp-0-10.app-id': 'qmf2', 'method': 'request'},
content={'_object_id': {'_object_name': 'org.apache.qpid.broker:broker:amqp-
broker'}, '_method_name': 'create', '_arguments': {'strict': True, 'type':
'exchange', 'name': u'test-fanout', 'properties': {'exchange-type': u'fanout'}}})

9.4. Broker Exchange and Queue Configuration via
QMF
QMF Command messages can be used to create and configure exchanges and queues. The
qpid-config command-line ut ility uses QMF messages to perform many of its administrat ion
tasks.

Chapter 9. Qpid Management Framework (QMF)

117

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8126-216149+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=QMF+-+Qpid+Management+Framework&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://cwiki.apache.org/qpid/qmfv2-project-page.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8374-349249+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=QMF+Versions&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8050-216266+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Creating+Exchanges+from+an+Application&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Report a bug

9.5. Command Messages
QMF Command Messages are specially formatted map messages sent to the broker's QMF
address qmf.default.direct/broker.

See Also:

Chapter 13, Maps and Lists

9.6. QMF Command Message Structure
QMF Command Message Content

QMF Command Messages are map messages. A QMF command message contains the keys
_object_id, _method_name and _arguments.

The key _object_id is mandatory. Its value is a nested map identifying the target of the
command. For QMF commands that administer the broker and its resources, the _object_id
map contains a single value with the key _object_name containing the value
org.apache.qpid.broker:broker:amqp-broker.

The key _method_name has the name of the command as its value and the key _arguments
contains a nested map of command arguments.

QMF Command Message Properties

Two message propert ies, x-amqp-0-10.app-id and qmf.opcode must be set. The property x-
amqp-0-10.app-id should always have the value qmf2 and qmf.opcode contains the value
_method_request.

QMF Command Response

To receive a response from the server, set the reply-to address of the QMF command
message to an address where you can receive messages. After the command message is sent
to the broker's QMF address, the response arrives from the reply-to address specified. The
response message has the x-amqp-0-10.app-id property set to qmf2.

If the command message is processed as expected, the response message qmf.opcode
property is set to _method_response. If an error was encountered, qmf.opcode property will
contain the value _exception.

The response message content is a map. In the case of a valid response, return values are
presented as a nested map against the key _arguments. In the case of an exception, details of
the exception are within a nested map against the key _values.

9.7. Create Command
The QMF create command takes five arguments:

type

Red Hat Enterprise MRG 2 Messaging Programming Reference

118

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8102-216184+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Broker+Exchange+and+Queue+Configuration+via+QMF&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8078-216269+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Command+Messages&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8081-216180+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=QMF+Command+Message+Structure&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

The type of object to be created, this can be a queue, exchange or binding.

name
The name of the object to be created. The name argument of a queue or exchange is a
single value, for example a queue named my-queue sets the name argument to a string of
that value. The name of a binding uses the pattern exchange/queue/key, for example:
amq.topic/my-queue/my-key identifies a binding between my-queue and the exchange
amq.topic with the binding key my-key.

properties
The specific propert ies for the object to be created, value is a nested map.

strict
The strict argument takes a boolean value that is presently ignored. This value is intended
to indicate whether the command will fail if any unrecognized propert ies have been
specified.

auto_delete_timeout
Optional. If specified upon first declaring an auto-delete queue, specifies a delay, in
seconds, after which the delet ion will take place. Note: If the queue is re-declared after
becoming eligible for delet ion, but before the delay expires, then the queue will be not be
deleted.

The following code example uses QMF to create a queue named my-queue. In this example my-
queue is configured to be auto-deleted after 10 seconds.

Python

Chapter 9. Qpid Management Framework (QMF)

119

Report a bug

9.8. Delete Command
The QMF delete command takes three arguments:

type
The type of object to be created, this can be a queue, exchange or binding.

name
The name of the object to be created. The name argument of a queue or exchange is a
single value, for example my-queue. The name of a binding uses the pattern
exchange/queue/key, for example: amq.topic/my-queue/my-key identifies a binding
between my-queue and the exchange amq.topic with the binding key my-key.

conn = Connection(opts.broker)
try:
 conn.open()
 ssn = conn.session()
 snd = ssn.sender("qmf.default.direct/broker")
 reply_to = "reply-queue; {create:always, node:{x-declare:{auto-
delete:true}}}"
 rcv = ssn.receiver(reply_to)

 content = {
 "_object_id": {"_object_name":
"org.apache.qpid.broker:broker:amqp-broker"},
 "_method_name": "create",
 "_arguments": {"type":"queue", "name":"my-queue",
"properties":{"auto-delete":True, "qpid.auto_delete_timeout":10}}
 }
 request = Message(reply_to=reply_to, content=content)
 request.properties["x-amqp-0-10.app-id"] = "qmf2"
 request.properties["qmf.opcode"] = "_method_request"
 snd.send(request)

 try:
 response = rcv.fetch(timeout=opts.timeout)
 if response.properties['x-amqp-0-10.app-id'] == 'qmf2':
 if response.properties['qmf.opcode'] == '_method_response':
 return response.content['_arguments']
 elif response.properties['qmf.opcode'] == '_exception':
 raise Exception("Error: %s" % response.content['_values'])
 else: raise Exception("Invalid response received, unexpected opcode: %s"
% m)
 else: raise Exception("Invalid response received, not a qmfv2 method: %s"
% m)
 except Empty:
 print "No response received!"
 except Exception, e:
 print e
except ReceiverError, e:
 print e
except KeyboardInterrupt:
 pass

conn.close()

Red Hat Enterprise MRG 2 Messaging Programming Reference

120

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8031-216220+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Create+Command&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

options
A neted map with the key options. This is presently unused.

9.9. List Command
The following example QMF message requests a list of exchanges from the broker:

The following example QMF message requests a list of queues from the server:

9.10. Queue and Exchange Creation using QMF
The following QMF message creates a new queue named test:

The following QMF message creates a new fanout exchange called test-fanout:

Python

Message(subject='broker', reply_to='qmf.default.topic/direct.8b59a7ae-93f1-
4450-9e43-1b0665bf622b;{node:{type:topic}, link:{x-declare:{auto-
delete:True,exclusive:True}}}', correlation_id='1', properties={'qmf.opcode':
'_query_request', 'x-amqp-0-10.app-id': 'qmf2', 'method': 'request'},
content={'_what': 'OBJECT', '_schema_id': {'_class_name': 'exchange'}})

Python

Message(subject='broker', reply_to='qmf.default.topic/direct.7f703720-c815-
4c79-986c-354b3963bc76;{node:{type:topic}, link:{x-declare:{auto-
delete:True,exclusive:True}}}', correlation_id='1', properties={'qmf.opcode':
'_query_request', 'x-amqp-0-10.app-id': 'qmf2', 'method': 'request'},
content={'_what': 'OBJECT', '_schema_id': {'_class_name': 'queue'}})

Python

Message(subject='broker', reply_to='qmf.default.topic/direct.8702f596-b112-
427d-b93e-7e0ae28f2ae8;{node:{type:topic}, link:{x-declare:{auto-
delete:True,exclusive:True}}}', correlation_id='1', properties={'qmf.opcode':
'_method_request', 'x-amqp-0-10.app-id': 'qmf2', 'method': 'request'},
content={'_object_id': {'_object_name': 'org.apache.qpid.broker:broker:amqp-
broker'}, '_method_name': 'create', '_arguments': {'strict': True, 'type':
'queue', 'name': u'test', 'properties': {}}})

Python

Chapter 9. Qpid Management Framework (QMF)

121

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8028-216228+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Delete+Command&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8164-230960+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=List+Command&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

9.11. QMF Events
QMF Events are messages sent to QMF topics to provide notificat ion of broker events. Queue
Threshold Alerts are implemented as QMF Events.

The QMF topics are
qmf.default.topic/agent.ind.event.org_apache_qpid_broker.$QMF_Event.#, where
$QMF_Event is one of the provided QMF Events from the following table:

Table 9.1. QMF Events

QMF Event Severity Arguments
clientConnect inform rhost, user, propert ies
clientConnectFail warn rhost, user, reason,

propert ies
clientDisconnect inform rhost, user, propert ies
brokerLinkUp inform rhost
brokerLinkDown warn rhost
queueDeclare inform rhost, user, qName, durable,

excl, autoDel, altEx, args, disp
queueDelete inform rhost, user, qName
exchangeDeclare inform rhost, user, exName, exType,

altEx, durable, autoDel, args,
disp

exchangeDelete inform rhost, user, exName
bind inform rhost, user, exName, qName,

key, args
unbind inform rhost, user, exName, qName,

key
subscribe inform rhost, user, qName, dest,

excl, args
unsubscribe inform rhost, user, dest
queueThresholdExceeded warn qName, msgDepth,

byteDepth

See Also:

Section 8.2.2, “Queue Threshold Alerts”

9.12. QMF Client Connection Events

Message(subject='broker', reply_to='qmf.default.topic/direct.81915d0a-d2e1-
4cf9-9369-921bac725aab;{node:{type:topic}, link:{x-declare:{auto-
delete:True,exclusive:True}}}', correlation_id='1', properties={'qmf.opcode':
'_method_request', 'x-amqp-0-10.app-id': 'qmf2', 'method': 'request'},
content={'_object_id': {'_object_name': 'org.apache.qpid.broker:broker:amqp-
broker'}, '_method_name': 'create', '_arguments': {'strict': True, 'type':
'exchange', 'name': u'test-fanout', 'properties': {'exchange-type': u'fanout'}}})

Red Hat Enterprise MRG 2 Messaging Programming Reference

122

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8029-230988+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Queue+and+Exchange+Creation+using+QMF&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=13359-372660+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=QMF+Events&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Changes

New content for 2.3

Whenever a client connects to or disconnects from the broker, a QMF Event message is
generated and sent to a QMF topic.
The QMF topics for these events are:

Table 9.2. QMF Client Connection Event Topics

QMF queue Purpose
qmf.default .topic/agent.ind.event.org_apach
e_qpid_broker.clientConnect.#

Client connections

qmf.default .topic/agent.ind.event.org_apach
e_qpid_broker.clientConnectFail.#

Failed connection attempts

qmf.default .topic/agent.ind.event.org_apach
e_qpid_broker.clientDisconnect.#

Client disconnections

MRG 2.3 adds addit ional propert ies to the QMF Client Connection and Disconnection event
messages to match connections and disconnections to specific clients. This enables audit ing
and troubleshooting. The new propert ies are:

client_ppid
client_pid

client_process

Here is an example of a QMF client connection event message, demonstrat ing the client
connection information:

[1]

Chapter 9. Qpid Management Framework (QMF)

123

Report a bug

Fetched Message(
 properties={
 u'qmf.agent': u'apache.org:qpidd:a2ff61bc-19b2-4078-8a7e-9c007151c79c',
 'x-amqp-0-10.routing-key':
u'agent.ind.event.org_apache_qpid_broker.clientConnect.info.apache_org.qpidd.a2ff61
bc-19b2-4078-8a7e-9c007151c79c',
 'x-amqp-0-10.app-id': 'qmf2',
 u'qmf.content': u'_event',
 u'qmf.opcode': u'_data_indication',
 u'method': u'indication'},
 content=[{
 u'_schema_id': {
 u'_package_name': 'org.apache.qpid.broker',
 u'_class_name': 'clientConnect',
 u'_type': '_event',
 u'_hash': UUID('476930ed-01dd-9629-7f84-f42b4b0bc410')},
 u'_timestamp': 1347032560197086881,
 u'_values': {
 u'user': 'anonymous',
 u'properties': {
 u'qpid.session_flow': 1,
 u'qpid.client_ppid': 26139,
 u'qpid.client_pid': 26876,
 u'qpid.client_process': u'spout'},
 u'rhost': '127.0.0.1:5672-127.0.0.1:43276'},
 u'_severity': 6}])

Fri Sep 7 15:42:40 2012 org.apache.qpid.broker:clientConnect user=anonymous
properties={
 u'qpid.session_flow': 1,
 u'qpid.client_ppid': 26139,
 u'qpid.client_pid': 26876,
 u'qpid.client_process': u'spout'}
rhost=127.0.0.1:5672-127.0.0.1:43276

9.13. ACL Lookup Query Methods
In MRG 2.3 and above, QMF methods are available to query the ACL Authorizat ion interface.

The Broker must be started with the ACL file that you wish to query, and that ACL file must
include sufficient permissions to allow the lookup operations:

Catch 22: allow anonymous to access the lookup debug functions
acl allow-log anonymous create queue
acl allow-log anonymous all exchange name=qmf.*
acl allow-log anonymous all exchange name=amq.direct
acl allow-log anonymous all exchange name=qpid.management
acl allow-log anonymous access method name=Lookup*

The QMF methods to query the ACL Authorizat ion interface are Lookup and LookupPublish.

The Lookup method is a general query for any act ion, object, and set of propert ies. The
LookupPublish method is the optimized, per-message fastpath query.

In both methods the result is one of: allow, deny, allow-log, or deny-log.

Method: Lookup

Red Hat Enterprise MRG 2 Messaging Programming Reference

124

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=13360-375160+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=QMF+Client+Connection+Events&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Table 9.3. Method: Lookup

Argument Type Direction
userId long-string I
act ion long-string I
object long-string I
objectName long-string I
propertyMap field-table I
result long-string O

Method: LookupPublish
Table 9.4. Method: LookupPublish

Argument Type Direction
userId long-string I
exchangeName long-string I
routingKey long-string I
result long-string O

Management Properties and Statistics
The following propert ies and stat ist ics have been added to reflect command line sett ings in
effect and Acl quota denial act ivity.

Table 9.5. Broker Management Quota Property

Element Type Access Description
maxConnections uint16 ReadOnly Maximum allowed

connections

Table 9.6. ACL Management Properties

Element Type Access Description
maxConnectionsPerIp uint16 ReadOnly Maximum allowed

connections
maxConnectionsPerU
ser

uint16 ReadOnly Maximum allowed
connections

maxQueuesPerUser uint16 ReadOnly Maximum allowed
queues

connectionDenyCoun
t

uint64 Number of
connections denied

queueQuotaDenyCou
nt

uint64 Number of queue
creations denied

Example
Procedure 9.1. ACL Lookup Example

To see a practical example, follow these steps.

Chapter 9. Qpid Management Framework (QMF)

125

1. Start the broker using the example ACL file acl-test-01-rules.acl reproduced below,
and with QPID_LOG_ENABLE=debug+:acl.

2. Run the Python script acl-test-01.py.
3. Examine the Python program output and the broker log.

ACL File acl-test-01-rules.acl

Red Hat Enterprise MRG 2 Messaging Programming Reference

126

acl-test-rules-00.acl
27-march-2012

group admins moe@COMPANY.COM \
 larry@COMPANY.COM \
 curly@COMPANY.COM \
 shemp@COMPANY.COM

group auditors aaudit@COMPANY.COM baudit@COMPANY.COM caudit@COMPANY.COM \
 daudit@COMPANY.COM eaduit@COMPANY.COM eaudit@COMPANY.COM

group tatunghosts tatung01@COMPANY.COM \
 tatung02/x86.build.company.com@COMPANY.COM \
 tatung03/x86.build.company.com@COMPANY.COM \
 tatung04/x86.build.company.com@COMPANY.COM \
 HTTP/tatung-test1.eng.company.com@COMPANY.COM

group publishusers publish@COMPANY.COM x-pubs@COMPANY.COM

Admins: This should be the *only* group which ever gets "all" access
to anything. Everything/everyone else must not be as permissive
acl allow-log admins all all

Catch 22: allow anonymous to access the lookup debug functions
acl allow-log anonymous create queue
acl allow-log anonymous all exchange name=qmf.*
acl allow-log anonymous all exchange name=amq.direct
acl allow-log anonymous all exchange name=qpid.management
acl allow-log anonymous access method name=Lookup*

acl allow all publish exchange name=''

Auditors
acl allow-log auditors all exchange name=company.topic routingkey=private.audit.*

Tatung
acl allow-log tatunghosts publish exchange name=company.topic routingkey=tatung.*
acl allow-log tatunghosts publish exchange name=company.direct routingkey=tatung-
service-queue

Publish
acl allow-log publishusers create queue
acl allow-log publishusers publish exchange name=qpid.management routingkey=broker
acl allow-log publishusers publish exchange name=qmf.default.topic routingkey=*
acl allow-log publishusers publish exchange name=qmf.default.direct routingkey=*

Consumers - everyone
acl allow-log all bind exchange name=company.topic routingkey=tatung.*
acl allow-log all bind exchange name=company.direct routingkey=tatung-service-
queue

acl allow-log all consume queue

acl allow-log all access exchange
acl allow-log all access queue

acl allow-log all create queue name=tmp.* durable=false autodelete=true
exclusive=true policytype=ring

All else is denied
acl deny-log all all

Chapter 9. Qpid Management Framework (QMF)

127

Python Script acl-test-01.py

Red Hat Enterprise MRG 2 Messaging Programming Reference

128

acl-test-00.py
test driver for QPID-3918 lookup hooks.
#
The broker is to use acl-test-00-rules.acl.

import sys
import qpid
import qmf

totalLookups = 0
failLookups = 0
exitOnError = True

#
Run a type 1 lookup
This is the general lookup
#
def Lookup(acl, userName, action, aclObj, aclObjName, propMap, expectedResult =
''):
 global totalLookups
 global failLookups
 totalLookups += 1
 result = acl.Lookup(userName, action, aclObj, aclObjName, propMap)
 suffix = ''
 if (expectedResult != ''):
 if (result.result != expectedResult):
 failLookups += 1
 suffix = ', [ERROR: Expected ' + expectedResult + "]"
 if (result.result is None):
 suffix = suffix + ', [' + result.text + ']'
 print 'Lookup : [name:', userName, ", action: ", action, ", object: ", aclObj,
\
 ", objName: '", aclObjName, "', properties: ", propMap, \
 "], [Result: ", result.result, "]", suffix
 if (exitOnError and failLookups > 0):
 sys.exit()

#
Run a type 2 lookup
This is a specific PUBLISH EXCHANGE ['user', 'exchangeName', 'routingKey']
lookup
#
def LookupPublish(acl, userName, exchName, keyName, expectedResult = ''):
 global totalLookups
 global failLookups
 totalLookups += 1
 result = acl.LookupPublish(userName, exchName, keyName)
 suffix = ''
 if (expectedResult != ''):
 if (result.result != expectedResult):
 failLookups += 1
 suffix = ', [ERROR: Expected ' + expectedResult + "]"
 if (result.result is None):
 suffix = suffix + ', [' + result.text + ']'
 print 'LookupPublish : [name:', userName, \
 ", exchName: '", exchName, "', key: ", keyName, \
 "], [Result: ", result.result, "]", suffix
 if (exitOnError and failLookups > 0):
 sys.exit()

#
AllBut
#
Given All names and some names we don't want,

Chapter 10. The Qpid Messaging API

129

return the All list with the targets removed
#
def AllBut(allList, removeList):
 tmpList = allList[:]
 for item in removeList:
 try:
 tmpList.remove(item)
 except Exception, e:
 print "ERROR in AllBut() \nallList = %s \nremoveList = %s \nerror =
%s " \
 % (allList, removeList, e)
 return tmpList

#
Main
#
Fire up a session and get the acl methods
#

from qmf.console import Session
sess = Session()
broker = sess.addBroker()
acls = sess.getObjects(_class="acl", _package="org.apache.qpid.acl")
acl = acls[0]
print acl.getMethods() # just to see the method names available

#
define some group lists
#
g_admins = ['moe@COMPANY.COM', \
 'larry@COMPANY.COM', \
 'curly@COMPANY.COM', \
 'shemp@COMPANY.COM']

g_auditors = ['aaudit@COMPANY.COM','baudit@COMPANY.COM','caudit@COMPANY.COM', \
 'daudit@COMPANY.COM','eaduit@COMPANY.COM','eaudit@COMPANY.COM']

g_tatunghosts = ['tatung01@COMPANY.COM', \
 'tatung02/x86.build.company.com@COMPANY.COM', \
 'tatung03/x86.build.company.com@COMPANY.COM', \
 'tatung04/x86.build.company.com@COMPANY.COM', \
 'HTTP/tatung-test1.eng.company.com@COMPANY.COM']

g_publishusers = ['publish@COMPANY.COM', 'x-pubs@COMPANY.COM']

g_public = ['jpublic@COMPANY.COM', 'me@yahoo.com']

g_all = g_admins + g_auditors + g_tatunghosts + g_publishusers + g_public

action_all =
['consume','publish','create','access','bind','unbind','delete','purge','update']

#
Run some tests
#
print '#'
print '# admin'
print '#'

for u in g_admins:
 Lookup(acl, u, "create", "queue", "anything", {"durable":"true"}, "allow-log")

print '#'

Red Hat Enterprise MRG 2 Messaging Programming Reference

130

print '# auditors'
print '#'

uInTest = g_auditors + g_admins
uOutTest = AllBut(g_all, uInTest)

for u in uInTest:
 LookupPublish(acl, u, "company.topic", "private.audit.This", "allow-log")

for u in uInTest:
 for a in action_all:
 Lookup(acl, u, a, "exchange", "company.topic",
{"routingkey":"private.audit.This"}, "allow-log")

for u in uOutTest:
 LookupPublish(acl, u, "company.topic", "private.audit.This", "deny-log")
 Lookup(acl, u, "bind", "exchange", "company.topic",
{"routingkey":"private.audit.This"}, "deny-log")

print '#'
print '# tatungs'
print '#'

uInTest = g_admins + g_tatunghosts
uOutTest = AllBut(g_all, uInTest)

for u in uInTest:
 LookupPublish(acl, u, "company.topic", "tatung.this2", "allow-log")
 LookupPublish(acl, u, "company.direct", "tatung-service-queue", "allow-log")

for u in uOutTest:
 LookupPublish(acl, u, "company.topic", "tatung.this2", "deny-log")
 LookupPublish(acl, u, "company.direct", "tatung-service-queue", "deny-log")

for u in uOutTest:
 for a in ["bind", "access"]:
 Lookup(acl, u, a, "exchange", "company.topic",
{"routingkey":"tatung.this2"}, "allow-log")
 Lookup(acl, u, a, "exchange", "company.direct", {"routingkey":"tatung-
service-queue"}, "allow-log")

print '#'
print '# publishusers'
print '#'

uInTest = g_admins + g_publishusers
uOutTest = AllBut(g_all, uInTest)

for u in uInTest:
 LookupPublish(acl, u, "qpid.management", "broker", "allow-log")
 LookupPublish(acl, u, "qmf.default.topic", "this3", "allow-log")
 LookupPublish(acl, u, "qmf.default.direct", "this4", "allow-log")

for u in uOutTest:
 LookupPublish(acl, u, "qpid.management", "broker", "deny-log")
 LookupPublish(acl, u, "qmf.default.topic", "this3", "deny-log")
 LookupPublish(acl, u, "qmf.default.direct", "this4", "deny-log")

for u in uOutTest:
 for a in ["bind"]:
 Lookup(acl, u, a, "exchange", "qpid.management",
{"routingkey":"broker"}, "deny-log")
 Lookup(acl, u, a, "exchange", "qmf.default.topic",
{"routingkey":"this3"}, "deny-log")

Chapter 10. The Qpid Messaging API

131

Report a bug

Report a bug

 Lookup(acl, u, a, "exchange", "qmf.default.direct",
{"routingkey":"this4"}, "deny-log")
 for a in ["access"]:
 Lookup(acl, u, a, "exchange", "qpid.management",
{"routingkey":"broker"}, "allow-log")
 Lookup(acl, u, a, "exchange", "qmf.default.topic",
{"routingkey":"this3"}, "allow-log")
 Lookup(acl, u, a, "exchange", "qmf.default.direct",
{"routingkey":"this4"}, "allow-log")

#
Report statistics
#
print 'Total Lookups: ', totalLookups
print 'Failed Lookups: ', failLookups

#
Close the session
#
sess.close()

9.14. Using QMF in a Cluster
To use QMF messages in a cluster, use QMF version 2. QMF version 1 messages cannot be used
in a cluster.

Not available in the Java client[1]

Red Hat Enterprise MRG 2 Messaging Programming Reference

132

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=13100-371230+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=ACL+Lookup+Query+Methods&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8377-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Using+QMF+in+a+Cluster&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Chapter 10. The Qpid
Messaging API
10.1. Handling Exceptions

10.1.1. Messaging Exceptions Reference
In the asynchronous and decoupled environment of a messaging applicat ion, exceptions are
thrown for both local error condit ions and error condit ions or failures that occur remotely.
Developing a robust applicat ion requires that you anticipate and handle a wide range of
possible exceptions, some of which are not immediately obvious from the context of the
method itself.

10.1.2. C++ Messaging Exceptions Class Hierarchy
The following are the exceptions thrown by the C++ API, and the circumstances under which
they are thrown. The source code for the exceptions can be viewed in the Apache Qpid svn
repository.

MessagingException
The base class for Messaging exceptions.

InvalidOptionString : public MessagingException
Thrown when the syntax of the option string used to configure a connection is not valid.

KeyError : public MessagingException
Thrown to indicate a failed lookup of some local object. For example when attempting to
retrieve a session, sender or receiver by name.

LinkError : public MessagingException
Base class for exceptions thrown to indicate a failed lookup of some local object.

AddressError : public LinkError
Thrown to indicate a failed lookup of some local object. For example when attempting to
retrieve a session, sender or receiver by name.

ResolutionError : public AddressError
Thrown when a syntactically correct address cannot be resolved or used.

AssertionFailed : public ResolutionError
Thrown when creating a sender or receiver for an address for which some asserted
property of the node is not matched.

NotFound : public ResolutionError
Thrown on attempts to create a sender or receiver to a non-existent node.

Chapter 10. The Qpid Messaging API

133

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10853-181537+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Messaging+Exceptions+Reference&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
http://svn.apache.org/viewvc/qpid/trunk/qpid/cpp/include/qpid/messaging/exceptions.h?view=markup[846404047]pathrev=1165391

Report a bug

MalformedAddress : public AddressError
Thrown when an address string with invalid syntax is used.

ReceiverError : public LinkError

FetchError : public ReceiverError

NoMessageAvailable : public FetchError
Thrown by Receiver::fetch(), Receiver::get() and Session::nextReceiver() to indicate that
there no message was available before the t imeout specified.

SenderError : public LinkError

SendError : public SenderError

TargetCapacityExceeded : public SendError
Thrown to indicate that the sender attempted to send a message that would result in the
target node on the peer exceeding a preconfigured capacity.

SessionError : public MessagingException

TransactionError : public SessionError

TransactionAborted : public TransactionError
Thrown on Session::commit() if reconnection results in the transaction being automatically
aborted.

UnauthorizedAccess : public SessionError
Thrown to indicate that the applicat ion attempted to do something for which it was not
authorised by its peer.

UnauthorizedAccess : public SessionError

ConnectionError : public MessagingException

TransportFailure : public MessagingException
Thrown to indicate loss of underlying connection. When auto-reconnect is used this will be
caught by the library and used to trigger reconnection attempts. If reconnection fails
(according to whatever sett ings have been configured), then an instance of this class will
be thrown to signal that.

10.1.3. Connection Exceptions

Red Hat Enterprise MRG 2 Messaging Programming Reference

134

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8400-180511+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=C%2B%2B+Messaging+Exceptions+Class+Hierarchy&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Note: Unless fully qualified, all exceptions listed are in the qpid::messaging namespace.

Connection::Connection(const std::string&, const
qpid::types::Variant::Map&)
MessagingException if any of the options in the supplied map are not recognised.

qpid::types::InvalidConversion if any of the option values are of the wrong type.

Connection::Connection(const std::string& url, const std::string& options)
MessagingException if any of the options in the supplied map are not recognised.

qpid::types::InvalidConversion if any of the option values are of the wrong type.

InvalidOptionString if the format of the option string is invalid.

Connection::setOption(const std::string& name, const
qpid::types::Variant& value)
MessagingException if the named option is not recognised.

qpid::types::InvalidConversion if the option value is of the wrong type.

Connection::open()
qpid::Url::Invalid if the url is not valid (this may be the url supplied on construction or
any of the reconnect_urls supplied via options).

TransportFailure if a connection could not be established.

ConnectionError for any other failure, including where the broker sends a connection.close
control before the AMQP 0-10 defined connection handshake completes.

qpid::types::InvalidConversion if the broker sends an improperly encoded value for the
'known-host' field of the connection.open-ok control as defined by AMQP 0-10
specificat ion.

Connection::isOpen()
Does not throw exceptions.

Connection::close()
TargetCapacityExceeded if any of the sessions established for the connection have
attempted to send a message that would result in a queue exceeding configured limits.

UnauthorizedAccess if any of the sessions established for the connection have attempted
to perform an operation for which it has not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection just before the client does).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session while the close
is in progress).

TransportFailure if a connection was lost while trying to perform the close 'handshake'

Chapter 10. The Qpid Messaging API

135

Report a bug

with the broker.

Connection::createTransactionalSession(const std::string& name)
SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected which could happen on enabling
transactions for the session (e.g. if the broker in question did not support transactions).

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of the session before it becomes
active).

TransportFailure if the connection was lost (and if automatic reconnect is enabled could
not be re-established).

qpid::Url::Invalid if reconnect is enabled and a url in the reconnect_urls option list is
invalid.

qpid::types::InvalidConversion if the broker were to send an improperly encoded value
for the 'known-host' field of the connection.open-ok control as defined by AMQP 0-10
specificat ion.

Connection::createSession(const std::string&)
ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of the session before it becomes
active).

TransportFailure if the connection was lost (and if automatic reconnect is enabled could
not be re-established).

qpid::Url::Invalid if reconnect is enabled and a url in the reconnect_urls option list is
invalid.

qpid::types::InvalidConversion if the broker were to send an improperly encoded value
for the 'known-host' field of the connection.open-ok control as defined by AMQP 0-10
specificat ion.

Connection::getSession(const std::string&)
KeyError if no session for the specified name exists.

Connection::getAuthenticatedUsername()
Does not throw any exception.

10.1.4. Session Exceptions
Note: Unless fully qualified, all exceptions listed are in the qpid::messaging namespace.

Red Hat Enterprise MRG 2 Messaging Programming Reference

136

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10856-327471+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Connection+Exceptions&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Session::close()
TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could
not be re-established).

Session::commit()
TransactionAborted if the original AMQP 0-10 session is lost, e.g. due to failover, forcing
an automatic rollback.

TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could
not be re-established).

Session::rollback()
TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could

Chapter 10. The Qpid Messaging API

137

not be re-established).

Session::acknowledge(bool)
TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could
not be re-established).

Session::acknowledge(Message&, bool)
TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could
not be re-established).

Session::acknowledgeUpTo(Message&, bool)
TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could
not be re-established).

Red Hat Enterprise MRG 2 Messaging Programming Reference

138

Session::reject(Message&)
TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

Throws SessionError if an execution.exception command, as defined in AMQP 0-10, is
received from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could
not be re-established).

Session::release(Message&)
TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not
be re-established).

Session::sync(bool)
TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could
not be re-established).

Chapter 10. The Qpid Messaging API

139

Session::getReceivable()
TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could
not be re-established).

Session::getUnsettledAcks()
TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not
be re-established).

Session::nextReceiver(Receiver&, Duration)
TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could
not be re-established).

Red Hat Enterprise MRG 2 Messaging Programming Reference

140

Session::nextReceiver(Duration)
Receiver::NoMessageAvailable if no message became available in t ime.

TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

Throws SessionError if an execution.exception command, as defined in AMQP 0-10, is
received from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could
not be re-established).

Session::createSender(const Address&)
ResolutionError if there is an error in resolving the address.

TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could
not be re-established).

Session::createSender(const std::string&)
ResolutionError if there is an error in resolving the address.

MalformedAddress if the syntax of the address string is not valid.

TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

Chapter 10. The Qpid Messaging API

141

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could
not be re-established).

Session::createReceiver(const Address&)
ResolutionError if there is an error in resolving the address.

TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could
not be re-established).

Session::createReceiver(const std::string&)
ResolutionError if there is an error in resolving the address.

MalformedAddress if the syntax of the address string is not valid.

TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could
not be re-established).

Session::getSender(const std::string&)
KeyError if there is no sender for the specified name.

Session::getReceiver(const std::string&)
KeyError if there is no receiver for the specified name.

Red Hat Enterprise MRG 2 Messaging Programming Reference

142

Report a bug

Session::checkError()
qpid::messaging::SessionError if an execution.exception command, as defined in AMQP
0-10, is received from the broker to which the client is connected.

qpid::messaging::ConnectionError if the broker to which the client is connected sends a
connection.close control (i.e. if broker init iates closing of an act ive connection).

qpid::messaging::MessagingException if the broker to which the client is connected
sends a session.detached control (i.e. if broker init iates closing of an act ive session).

Session::getConnection()
Does not throw exceptions.

Session::hasError()
Does not throw exceptions.

10.1.5. Sender Exceptions
Note: Unless fully qualified, all exceptions listed are in the qpid::messaging namespace.

Sender::send(const Message& message, bool)
TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could
not be re-established).

Sender::close()
TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a

Chapter 10. The Qpid Messaging API

143

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10855-370578+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Session+Exceptions&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could
not be re-established).

Sender::setCapacity(uint32_t)
TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could
not be re-established).

Sender::getUnsettled()
TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could
not be re-established).

Sender::getAvailable()
TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session).

Red Hat Enterprise MRG 2 Messaging Programming Reference

144

Report a bug

session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could
not be re-established).

Sender::getCapacity()
Does not throw exceptions.

Sender::getName()
Does not throw exceptions.

Sender::getSession()
Does not throw exceptions.

10.1.6. Receiver Exceptions
Note: Unless fully qualified, all exceptions listed are in the qpid::messaging namespace.

Receiver::get(Message& message, Duration timeout=Duration::FOREVER)
TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could
not be re-established).

Receiver::Message get(Duration timeout=Duration::FOREVER)
NoMessageAvailable if there is no message to give after wait ing for the specified
timeout, or if the Receiver is closed, in which case isClose() will be true.

TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

Chapter 11. Addresses

145

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10858-181517+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Sender+Exceptions&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could
not be re-established).

Receiver::fetch(Message& message, Duration timeout=Duration::FOREVER)
TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could
not be re-established).

Receiver::fetch(Duration timeout=Duration::FOREVER)
NoMessageAvailable if there is no message to give after wait ing for the specified
timeout, or if the Receiver is closed, in which case isClose() will be true.

TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could
not be re-established).

Receiver::setCapacity(uint32_t)
TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

Red Hat Enterprise MRG 2 Messaging Programming Reference

146

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could
not be re-established).

Receiver::getAvailable()
TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could
not be re-established).

Receiver::getUnsettled()
TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could
not be re-established).

Receiver::close()
TargetCapacityExceeded if the session has attempted to send a message that would
result in a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has
not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close

Chapter 11. Addresses

147

Report a bug

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker init iates closing of an act ive connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker init iates closing of an act ive session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could
not be re-established).

Receiver::isClosed()
Does not throw exceptions.

Receiver::getCapacity()
Does not throw exceptions.

Receiver::getName()
Does not throw exceptions.

Receiver::getSession()
Does not throw exceptions.

Red Hat Enterprise MRG 2 Messaging Programming Reference

148

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10857-181520+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Receiver+Exceptions&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Chapter 11. Addresses
11.1. x-declare Parameters
The following parameters may be supplied in the x-declare part of an address string:

Table 11.1.

Parameter Usage
auto-delete boolean specifying if the queue/exchange

should be auto-deleted
exclusive boolean specifying exclusiveness of the

queue/exchange
alternate-exchange alternate exchange where messages shall be

routed to when this queue is deleted / the
exchange fails to find a matching bind for a
message

arguments a nested map with arguments available
specifically for the queue / exchange. Refer
to
https://cwiki.apache.org/confluence/display/q
pid/Qpid+extensions+to+AMQP for further
details.

11.2. Connection Options
Aspects of the connection behavior can be controlled through connection options. For
example, connections can be configured to automatically reconnect if the connection to a
broker is lost.

11.3. Setting Connection Options
There are two different ways to set connection options. The first is to do it in the Connection
constructor:

Python

connection = Connection("localhost:5672", reconnect = True, reconnect_urls =
"amqp:tcp:127.0.0.1:5674", heartbeat = 1)
try:
 connection.open()

C++

Connection connection("localhost:5672", "{reconnect: true,
reconnect_urls:'amqp:tcp:127.0.0.1:5674', reconnect:true, heartbeat: 1}");
try {
 connection.open();

Chapter 12. Message Timestamping

149

https://cwiki.apache.org/confluence/display/qpid/Qpid+extensions+to+AMQP
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=11981-326488+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=x-declare+Parameters&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8090-189269+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Connection+Options&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

The second approach is to do it through the Connection propert ies:

11.4. Connection Options Reference

.NET/C#

Connection connection= new Connection("localhost:5672", "{reconnect: true,
reconnect_urls:'amqp:tcp:127.0.0.1:5674', reconnect:true, heartbeat: 1}");
try {
 connection.Open();

Python

connection = Connection("localhost:5672")
connection.reconnect = True
try:
 connection.Open()

C++

Connection connection("localhost:5672");
connection.setOption("reconnect", true);
try {
 connection.open();

.NET/C#

Connection connection = new Connection("localhost:5672");
connection.SetOption("reconnect", true);
try {
 connection.Open();

Red Hat Enterprise MRG 2 Messaging Programming Reference

150

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8036-327469+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Setting+Connection+Options&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Table 11.2. Connection Options

Option name Value type Semantics
username string The username to use when

authenticat ing to the broker.
password string The password to use when

authenticat ing to the broker.
sasl_mechanisms string The specific SASL

mechanisms to use when
authenticat ing to the broker
as a space separated list .

reconnect boolean Transparently reconnect if
the connection is lost.

reconnect_urls Broker address list A list of one or more brokers
to attempt communication
with when a connection fails.

reconnect_timeout integer Total number of seconds to
continue reconnection
attempts before giving up
and raising an exception.

reconnect_limit integer Maximum number of
reconnection attempts
before giving up and raising
an exception.

reconnect_interval_min integer representing t ime in
seconds

Minimum number of seconds
between reconnection
attempts. The first
reconnection attempt is
made immediately; if that
fails, the first reconnection
delay is set to the value of
reconnect_interval_min; if
that attempt fails, the
reconnect interval increases
exponentially until a
reconnection attempt
succeeds or
reconnect_interval_max is
reached.

reconnect_interval_max integer representing t ime in
seconds

Maximum reconnect interval.

reconnect_interval integer representing t ime in
seconds

Sets both
reconnection_interval_min
and
reconnection_interval_max
to the same value.

heartbeat integer representing t ime in
seconds

Requests that heartbeats be
sent every N seconds. If two
successive heartbeats are
missed the connection is
considered to be lost.
Heartbeats should be
defined to, at most, 1/2 of
TCP retransmission overall-
t ime. By default , TCP
retransmission t ime is around
15 minutes on Linux and 12

Chapter 13. Maps and Lists

151

Report a bug

seconds on Windows.
protocol string Sets the underlying protocol

used. The default option is
tcp. To enable ssl, set to ssl.
The C++ client addit ionally
supports rdma.

tcp_nodelay boolean Set tcp_no_delay, i.e. disable
Nagle algorithm.

Red Hat Enterprise MRG 2 Messaging Programming Reference

152

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8044-327470+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Connection+Options+Reference&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Report a bug

Chapter 12. Message
Timestamping
12.1. Message Timestamping
Messages can be t imestamped with the date and t ime of their arrival at the broker. By default
t imestamping of messages is turned off.

12.2. Enable Message Timestamping at Broker
Start-up
To enable message t imestamping at broker start-up, start the broker with the --enable-
timestamp yes argument:

./qpidd --enable-timestamp yes

12.3. Enable Message Timestamping from an
Application
QMF command messages can be used to enable and disable t imestamping from an applicat ion,
with no need to restart the broker.

The QMF methods getTimestampConfig and setTimestampConfig get and set the
timestamping configuration.

getTimestampConfig
Returns True if received messages are t imestamped.

setTimestampConfig
Set True to enable t imestamping received messages, False to disable t imestamping.

12.4. Access a Message Timestamp in Python
The following code fragment checks for and extracts the message t imestamp from a received
message.

Chapter 13. Maps and Lists

153

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8138-231001+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Message+Timestamping&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8067-231008+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Enable+Message+Timestamping+at+Broker+Start-up&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8160-231034+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Enable+Message+Timestamping%09from+an+Application&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Report a bug

try:
 msg = receiver.fetch(timeout=1)
 if "x-amqp-0-10.timestamp" in msg.properties:
 print("Timestamp=%s" % str(msg.properties["x-amqp-0-10.timestamp"]))
except Empty:
 pass

12.5. Access a Message Timestamp in C++
The following code fragment checks for and extracts the message t imestamp from a received
message.

messaging::Message msg;
if (receiver.fetch(msg, messaging::Duration::SECOND*1)) {
 if (msg.getProperties().find("x-amqp-0-10.timestamp") !=
msg.getProperties().end()) {
 std::cout << "Timestamp=" <<
msg.getProperties()["x-amqp-0-10.timestamp"].asString() << std::endl;
 }
}

12.6. Using AMQ 0-10 Message Property Keys for
Timestamping
If the t imestamp delivery property is set in an incoming message (delivery-
properties.timestamp), the t imestamp value can be accessed using the x-amqp-0-
10.timestamp message property.

See Also:

Chapter 19, The AMQP 0-10 mapping

Red Hat Enterprise MRG 2 Messaging Programming Reference

154

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8033-249071+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Access+a+Message+Timestamp+in+Python&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8041-249076+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Access+a+Message+Timestamp+in+C%2B%2B&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8043-249126+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Using+AMQ+0-10+Message+Property+Keys+for+Timestamping&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Report a bug

Chapter 13. Maps and Lists
13.1. Maps and Lists in Message Content
Messaging applicat ions frequently need to exchange data across languages and platforms.
Messages can contain maps and lists.

13.2. Map and List Representation in Native Data
Types
Table 13.1. Map and List Representation in Supported Languages

Language map list
Python dict list

C++ Variant::Map Variant::List

Java MapMessage ListMessage
.NET Dictionary<string,

object>
Collection<object>

13.3. Differences between Qpid and JMS Map
Message Content
In versions of Red Hat Enterprise Message (MRG) up 2.2, the Qpid JMS client supports
MapMessages whose values can be nested maps or lists. This is not standard JMS behavior.

MRG 2.3 adds the ListMessage type for lists.

See Also:

Section 20.6, “JMS ListMessage”

13.4. Qpid Maps and Lists in Python
In Python, Qpid supports the dict and list types direct ly in message content. The following
code shows how to send these structures in a message:

[a]

MRG 2.3+[a]

Python

Chapter 13. Maps and Lists

155

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8158-189293+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Maps+and+Lists+in+Message+Content&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8168-371183+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Map+and+List+Representation+in+Native+Data+Types&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8089-371668+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Differences+between+Qpid+and+JMS+Map+Message+Content&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

13.5. Python Data Types in Maps
The following table shows the data types that can be sent in a Python map message, and the
corresponding data types that will be received by clients in Java or C++.

Table 13.2. Python Data Types in Maps

Python Data Type → C++ → Java
 bool bool boolean

 int int64 long

 long int64 long

 float double double

 unicode string java.lang.String

 uuid qpid::types::Uuid java.util.UUID

 dict Variant::Map java.util.Map

 list Variant::List java.util.List

13.6. Qpid Maps and Lists in C++
In C++, Qpid defines the the Variant::Map and Variant::List types, which can be encoded into
message content. The following code shows how to send these structures in a message:

from qpid.messaging import *
!!! SNIP !!!

content = {'Id' : 987654321, 'name' : 'Widget', 'percent' : 0.99}
content['colours'] = ['red', 'green', 'white']
content['dimensions'] = {'length' : 10.2, 'width' : 5.1,'depth' : 2.0};
content['parts'] = [[1,2,5], [8,2,5]]
content['specs'] = {'colors' : content['colours'],
 'dimensions' : content['dimensions'],
 'parts' : content['parts'] }
message = Message(content=content)
sender.send(message)

C++

Red Hat Enterprise MRG 2 Messaging Programming Reference

156

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8079-189303+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Qpid+Maps+and+Lists+in+Python&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8161-189307+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Python+Data+Types+in+Maps&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

13.7. C++ Data Types in Maps
The following table shows the data types that can be sent in a C++ map message, and the
corresponding data types that will be received by clients in Java and Python.

using namespace qpid::types;

// !!! SNIP !!!

Message message;
Variant::Map content;
content["id"] = 987654321;
content["name"] = "Widget";
content["percent"] = 0.99;
Variant::List colours;
colours.push_back(Variant("red"));
colours.push_back(Variant("green"));
colours.push_back(Variant("white"));
content["colours"] = colours;

Variant::Map dimensions;
dimensions["length"] = 10.2;
dimensions["width"] = 5.1;
dimensions["depth"] = 2.0;
content["dimensions"]= dimensions;

Variant::List part1;
part1.push_back(Variant(1));
part1.push_back(Variant(2));
part1.push_back(Variant(5));

Variant::List part2;
part2.push_back(Variant(8));
part2.push_back(Variant(2));
part2.push_back(Variant(5));

Variant::List parts;
parts.push_back(part1);
parts.push_back(part2);
content["parts"]= parts;

Variant::Map specs;
specs["colours"] = colours;
specs["dimensions"] = dimensions;
specs["parts"] = parts;
content["specs"] = specs;

encode(content, message);
sender.send(message, true);

Chapter 13. Maps and Lists

157

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8077-189310+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Qpid+Maps+and+Lists+in+C%2B%2B&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Table 13.3. C++ Data Types in Maps

 C++ Data Type → Python → Java

 bool bool boolean

 uint16 int | long short

 uint32 int | long int

 uint64 int | long long

 int16 int | long short

 int32 int | long int

 int64 int | long long

 float float float

 double float double

 string unicode java.lang.String

 qpid::types::Uuid uuid java.util.UUID

 Variant::Map dict java.util.Map

 Variant::List list java.util.List

13.8. Qpid Maps and Lists in .NET C#
The .NET binding for the Qpid Messaging API binds .NET managed data types to C++ Variant
data types. The following code shows how to send Variant::Map and Variant::List structures in
a message:

.NET/C#

Red Hat Enterprise MRG 2 Messaging Programming Reference

158

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8088-189313+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=C%2B%2B+Data+Types+in+Maps&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using Org.Apache.Qpid.Messaging;

namespace Org.Apache.Qpid.Messaging.examples
{
 class MapSender
 {
 // csharp.map.sender example
 //
 // Send an amqp/map message
 // The map message contains simple types, a nested amqp/map,
 // an ampq/list, and specific instances of each supported type.
 //
 static int Main(string[] args)
 {
 string url = "amqp:tcp:localhost:5672";
 string address = "message_queue; {create: always}";
 string connectionOptions = "";

 if (args.Length > 0)
 url = args[0];
 if (args.Length > 1)
 address = args[1];
 if (args.Length > 2)
 connectionOptions = args[2];

 //
 // Create and open an AMQP connection to the broker URL
 //
 Connection connection = new Connection(url, connectionOptions);
 connection.Open();

 //
 // Create a session and a sender
 //
 Session session = connection.CreateSession();
 Sender sender = session.CreateSender(address);

 //
 // Create structured content for the message. This example builds
a
 // map of items including a nested map and a list of values.
 //
 Dictionary<string, object> content = new Dictionary<string,
object>();
 Dictionary<string, object> subMap = new Dictionary<string,
object>();
 Collection<object> colors = new Collection<object>();

 // add simple types
 content["id"] = 987654321;
 content["name"] = "Widget";
 content["percent"] = 0.99;

 // add nested amqp/map
 subMap["name"] = "Smith";
 subMap["number"] = 354;
 content["nestedMap"] = subMap;

 // add an amqp/list
 colors.Add("red");
 colors.Add("green");

Chapter 14. The Request/Response Pattern

159

 colors.Add("white");
 // list contains null value
 colors.Add(null);
 content["colorsList"] = colors;

 // add one of each supported amqp data type
 bool mybool = true;
 content["mybool"] = mybool;

 byte mybyte = 4;
 content["mybyte"] = mybyte;

 UInt16 myUInt16 = 5 ;
 content["myUInt16"] = myUInt16;

 UInt32 myUInt32 = 6;
 content["myUInt32"] = myUInt32;

 UInt64 myUInt64 = 7;
 content["myUInt64"] = myUInt64;

 char mychar = 'h';
 content["mychar"] = mychar;

 Int16 myInt16 = 9;
 content["myInt16"] = myInt16;

 Int32 myInt32 = 10;
 content["myInt32"] = myInt32;

 Int64 myInt64 = 11;
 content["myInt64"] = myInt64;

 Single mySingle = (Single)12.12;
 content["mySingle"] = mySingle;

 Double myDouble = 13.13;
 content["myDouble"] = myDouble;

 Guid myGuid = new Guid("000102030405060708090a0b0c0d0e0f");
 content["myGuid"] = myGuid;

 content["myNull"] = null;

 //
 // Construct a message with the map content and send it
synchronously
 // via the sender.
 //
 Message message = new Message(content);
 sender.Send(message, true);

 //
 // Wait until broker receives all messages.
 //
 session.Sync();

 //
 // Close the connection.
 //
 connection.Close();
 return 0;
 }
 }

Red Hat Enterprise MRG 2 Messaging Programming Reference

160

Report a bug

Report a bug

13.9. C# Data Types and .NET bindings
The following table shows the mapping between data types in .NET and C++..

Table 13.4. Data Type Mapping between C++ and .NET binding

C++ Data Type .NET binding
 void nullptr

 bool bool

 uint8 byte

 uint16 UInt16

 uint32 UInt32

 uint64 UInt64

 int16 char

 int16 Int16

 int32 Int32

 int64 Int64

 float Single

 double Double

 string string

 qpid::types::Uuid Guid

 Variant::Map Dictionary< string, object >

 Variant::List Collection< object >

Note

.NET string objects are translated to and from C++ strings using UTF-8 encoding only.

}

Chapter 16. Cluster Failover

161

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8084-189319+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Qpid+Maps+and+Lists+in+.NET+C%23&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8122-189322+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=C%23+Data+Types+and+.NET+bindings&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Chapter 14. The
Request/Response Pattern
14.1. The Request/Response Pattern
Request/Response applicat ions use the reply-to message property to allow a server to
respond to the client that sent a message. A server sets up a service queue, with a name
known to clients. A client creates a private queue for the server's response, creates a
message for a request, sets the request's reply-to property to the address of the client's
response queue, and sends the request to the service queue. The server sends the response
to the address specified in the request's reply-to property.

14.2. Request/Response C++ Example
This example is a client and server that use the request/response pattern. The server creates
a service queue and waits for a message to arrive. If it receives a message, it sends a message
back to the sender.

The client creates a sender for the service queue, and also creates a response queue that is
deleted when the client closes the receiver for the response queue. In the C++ client, if the
address starts with the character #, it is given a unique name.

C++

Receiver receiver = session.createReceiver("service_queue; {create: always}");

Message request = receiver.fetch();
const Address& address = request.getReplyTo(); // Get "reply-to" from request
...
if (address) {
 Sender sender = session.createSender(address); // ... send response to
"reply-to"
 Message response("pong!");
 sender.send(response);
 session.acknowledge();
}

C++

Sender sender = session.createSender("service_queue");

Address responseQueue("#response-queue; {create:always, delete:always}");
Receiver receiver = session.createReceiver(responseQueue);

Message request;
request.setReplyTo(responseQueue);
request.setContent("ping");
sender.send(request);
Message response = receiver.fetch();
std::cout << request.getContent() << " -> " << response.getContent() <<
std::endl;

Red Hat Enterprise MRG 2 Messaging Programming Reference

162

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8119-189327+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=The+Request%2FResponse+Pattern&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

The client sends the string ping to the server. The server sends the response pong back to the
same client, using the replyTo property.

Chapter 16. Cluster Failover

163

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8167-189337+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Request%2FResponse+C%2B%2B+Example&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Chapter 15. Performance
Tips
15.1. Apache Qpid Programming for Performance

Consider prefetching messages for receivers. This helps eliminate roundtrips and increases
throughput. Prefetch is disabled by default , and enabling it is the most effect ive means of
improving throughput of received messages.
Send messages asynchronously. Again, this helps eliminate roundtrips and increases
throughput. The C++ and .NET clients send asynchronously by default , however the python
client defaults to synchronous sends.
Acknowledge messages in batches. Rather than acknowledging each message individually,
consider issuing acknowledgments after n messages and/or after a part icular duration has
elapsed.
Tune the sender capacity. If the capacity is too low the sender may block wait ing for the
broker to confirm receipt of messages, before it can free up more capacity.
If you are sett ing a reply-to address on messages being sent by the c++ client, make sure
the address type is set to either queue or topic as appropriate. This avoids the client having
to determine which type of node is being referred to, which is required when handling reply-
to in AMQP 0-10.
For latency-sensit ive applicat ions, sett ing tcp-nodelay on qpidd and on client connections
can help reduce the latency.

Red Hat Enterprise MRG 2 Messaging Programming Reference

164

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8095-249248+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Apache+Qpid+Programming+for+Performance&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Chapter 16. Cluster
Failover
16.1. Messaging Clusters
A Messaging Cluster is a group of brokers that act as a single broker. Every broker in a cluster
has the same queues, exchanges, messages, and bindings. Messaging Clusters allow a client to
fail over to a new broker and continue without any loss of messages if the current broker fails
or becomes unavailable. Changes on any broker are replicated to all other brokers in the same
Messaging Cluster, so if one broker fails, its clients can fail over to another broker without loss
of state.

The brokers in a Messaging Cluster can run on the same host or on different hosts. Any number
of messaging brokers can be run as one cluster, and brokers can be added to or removed from
a cluster while it is in use. Two messaging brokers are in the same cluster if:

They use the same OpenAIS mcastaddr, mcastport, and bindnetaddr, and
They use the same cluster name.

High Availability Messaging Clusters are implemented using the OpenAIS Cluster Framework,
which provides a reliable mult icast protocol, tools, and infrastructure for implementing
replicated services.

Note

Note that the openais package has been renamed to corosync in Red Hat Enterprise
Linux 6.

16.2. Cluster Failover in C++
The messaging broker can be run in clustering mode, which provides high reliability through
replicat ing state between brokers in the cluster. If one broker in a cluster fails, clients can
choose another broker in the cluster and continue their work. Each broker in the cluster also
advert ises the addresses of all known brokers. A client can use this information to dynamically
keep the list of reconnection URLs up to date.In C++, the FailoverUpdates class provides this
functionality:

#include <qpid/messaging/FailoverUpdates.h>
...
Connection connection("localhost:5672");
connection.setOption("reconnect", true);
try {
 connection.open();
 std::auto_ptr<FailoverUpdates> updates(new FailoverUpdates(connection));

Chapter 17. Logging

165

http://www.openais.org/
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=7025-370605+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Messaging+Clusters&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8373-243411+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Cluster+Failover+in+C%2B%2B&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

16.3. Cluster Failover in Python
The messaging broker can be run in clustering mode, which provides high reliability through
replicat ing state between brokers in the cluster. If one broker in a cluster fails, clients can
choose another broker in the cluster and continue their work. Each broker in the cluster also
advert ises the addresses of all known brokers. A client can use this information to dynamically
keep the list of reconnection URLs up to date. The following example configures cluster failover
in Python:

import qpid.messaging.util
...
connection = Connection("localhost:5672")
connection.reconnect = True
try:
 connection.open()
 auto_fetch_reconnect_urls(connection)

16.4. Cluster Failover in C#
The messaging broker can be run in clustering mode, which provides high reliability through
replicat ing state between brokers in the cluster. If one broker in a cluster fails, clients can
choose another broker in the cluster and continue their work. Each broker in the cluster also
advert ises the addresses of all known brokers. A client can use this information to dynamically
keep the list of reconnection URLs up to date. The following example configures cluster failover
in C#:

using Org.Apache.Qpid.Messaging;
...
connection = new Connection("localhost:5672");
connection.SetOption("reconnect", true);
try {
 connection.Open();
 FailoverUpdates failover = new FailoverUpdates(connection);

16.5. Failover Behavior in Java JMS Clients
If a client is connected to a broker, the connection fails if the broker crashes or is killed. When a
client's connection to a broker fails: (a) any sent messages that have been acknowledged by
the sender are replicated to all brokers in the cluster; (b) any received messages that have not
yet been acknowledged by the receiving client are requeued to all brokers, (c) the client API
notifies the applicat ion of the failure by throwing an exception.

A client can be configured to automatically reconnect to another broker when it receives such
an exception. Any messages that have been sent by the client, but not yet acknowledged as
delivered, are resent. Any messages that have been read by the client, but not acknowledged,
are delivered to the client.

In Java JMS clients, client failover is handled automatically if it is enabled in the connection. Any
messages that have been sent by the client, but not yet acknowledged as delivered, are
resent. Any messages that have been read by the client, but not acknowledged, are sent to
the client.

Red Hat Enterprise MRG 2 Messaging Programming Reference

166

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8375-243416+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Cluster+Failover+in+Python&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8376-243418+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Cluster+Failover+in+C%23&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

You can configure a connection to use failover using the failover property:

connectionfactory.qpidConnectionfactory = amqp://guest:guest@clientid/test?
brokerlist='tcp://localhost:5672'&failover='failover_exchange'

brokerlist can take a semi-colon-separated list of brokers, like so:

brokerlist='<transport>://<host>[:<port>](?<param>=<value>)?
(&<param>=<value>)*(;<transport>://<host>[:<port>])?(?<param>=<value>)?
(&<param>=<value>)*'

For example:

brokerlist='tcp://ip1:5672;tcp://ip2:5672;tcp://ip3:5672?
ssl='true'&ssl_cert_alias='cert1'

Note that the broker option parameters are per-broker. Each broker in the list can have its own
list of parameters, like so:

amqp://guest:guest@/test?failover='roundrobin?
cyclecount='2''&brokerlist='tcp://ip1:5672?
retries='5'&connectdelay='2000';tcp://ip2:5672?retries='5'&connectdelay='2000''

The failover property can take three values:

Failover Modes

failover_exchange
If the connection fails, fail over to any other broker in the cluster.

roundrobin
If the connection fails, remove head of brokerlist then fail over to the new broker now
specified at head of list , until brokerlist is empty.

singlebroker
Failover is not supported; the connection is to a single broker only.

TCP is slow to detect connection failures. A client can configure a connection to use a
heartbeat to detect connection failure, and can specify a t ime interval for the heartbeat. If
heartbeats are in use, failures will be detected no later than twice the heartbeat interval.

In a Connection URL, heartbeat is set using the idle_timeout property, which is an integer
corresponding to the heartbeat period in seconds. For instance, the following line from a JNDI
propert ies file sets the heartbeat t ime out to 3 seconds:

connectionfactory.qpidConnectionfactory = amqp://guest:guest@clientid/test?
brokerlist='tcp://localhost:5672',idle_timeout=3

Chapter 18. Security

167

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=7014-331067+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Failover+Behavior+in+Java+JMS+Clients&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Chapter 17. Logging
17.1. Logging in C++
The Qpidd broker and C++ clients can both use environment variables to enable logging. Linux
and Windows systems use the same named environment variables and values.

1. Use QPID_LOG_ENABLE to set the level of logging you are interested in (trace, debug,
info, notice, warning, error, or critical):

export QPID_LOG_ENABLE="warning+"

2. The Qpidd broker and C++ clients use QPID_LOG_OUTPUT to determine where logging
output should be sent. This is either a file name or the special values stderr, stdout, or
syslog:

export QPID_LOG_TO_FILE="/tmp/myclient.out"

3. From a Windows command prompt, use the following command format to set the
environment variables:

set QPID_LOG_ENABLE=warning+
set QPID_LOG_TO_FILE=D:\tmp\myclient.out

17.2. Logging in Python
The Python client library supports logging using the standard Python logging module.

The basicConfig() logging method reports all warnings and errors:

from logging import basicConfig
basicConfig()

The qpidd daemon alllows you to specify the level of logging desired. For instance, the
following code enables logging at the DEBUG level:

from qpid.log import enable, DEBUG
enable("qpid.messaging.io", DEBUG)

For more information on Python logging, see http://docs.python.org/lib/node425.html. For more
information on Qpid logging, run $ pydoc qpid.log.

17.3. Change the logging level at runtime
The logging level of the broker can be changed at runtime, without restart ing. This is useful to
increase the level of logging detail while debugging, then return it to a lower level.

The Qpid Management Framework Broker object has a setLogLevel method to control the
logging level. The following C++ code demonstrates calling this method to set the logging
level.

Red Hat Enterprise MRG 2 Messaging Programming Reference

168

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8074-370719+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Logging+in+C%2B%2B&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
http://docs.python.org/lib/node425.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8059-249275+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Logging+in+Python&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

#include <qpid/messaging/Connection.h>
#include <qpid/messaging/Session.h>
#include <qpid/messaging/Sender.h>
#include <qpid/messaging/Receiver.h>
#include <qpid/messaging/Message.h>
#include <qpid/messaging/Address.h>

#include <iostream>

using namespace std;
using namespace qpid::messaging;
using namespace qpid::types;

int main(int argc, char** argv) {
 if (argc < 2) {
 cerr << "Invalid number of parameters, expecting log level (info, trace,
warning or so)" << endl;
 return 1;
 }
 string log_level = argv[1];

 Connection connection(argc>2?argv[2]:"localhost:5672");
 connection.open();
 Session session = connection.createSession();
 Sender sender = session.createSender("qmf.default.direct/broker");
 Address responseQueue("#reply-queue; {create:always, node:{x-declare:{auto-
delete:true}}}");
 Receiver receiver = session.createReceiver(responseQueue);

 Message message;
 Variant::Map content;
 Variant::Map OID;
 Variant::Map arguments;

 OID["_object_name"] = "org.apache.qpid.broker:broker:amqp-broker";
 arguments["level"] = log_level;

 content["_object_id"] = OID;
 content["_method_name"] = "setLogLevel";
 content["_arguments"] = arguments;

 encode(content, message);
 message.setReplyTo(responseQueue);
 message.setProperty("x-amqp-0-10.app-id", "qmf2");
 message.setProperty("qmf.opcode", "_method_request");
 message.setContentType("amqp/map");

 sender.send(message, true);

 /* receive a response from the broker & check our request was successfully
processed */
 Message response;
 if (receiver.fetch(response,qpid::messaging::Duration(30000)) == true) {
 qpid::types::Variant::Map recv_props = response.getProperties();
 if (recv_props["x-amqp-0-10.app-id"] == "qmf2")
 if (recv_props["qmf.opcode"] == "_method_response")
 std::cout << "Response: OK" << std::endl;
 else if (recv_props["qmf.opcode"] == "_exception")
 std::cerr << "Error: " << response.getContent() << std::endl;
 else
 std::cerr << "Invalid response received!" << std::endl;
 else
 std::cerr << "Invalid response not of qmf2 type received!" << std::endl;
 }

Chapter 19. The AMQP 0-10 mapping

169

Report a bug

 else
 std::cout << "Timeout: No response received within 30 seconds!" << std::endl;

 receiver.close();
 sender.close();
 session.close();
 connection.close();
 return 0;
 }

1. Save the example code to a file set_log_level.cpp.
2. Modify the Connection URL in the code to resolve to your broker. At the moment it is set

to connect to a broker running on port 5672 on the local machine.
3. Compile the example code:

g++ -Wall -lqpidclient -lqpidcommon -lqpidmessaging -lqpidtypes -o
set_log_level set_log_level.cpp

4. Use the complied program to change the log level of the broker:

./set_log_level "trace+"

5. To observe the change in the logging level, tail the server log as you run the program.

Red Hat Enterprise MRG 2 Messaging Programming Reference

170

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8398-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Change+the+logging+level+at+runtime&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Report a bug

Report a bug

Report a bug

Chapter 18. Security
18.1. Security features provided by Qpid
Qpid provides authenticat ion, rule-based authorizat ion, encryption, and digital signing.

18.2. Authentication
Qpid uses Simple Authenticat ion and Security Layer (SASL) to authenticate client connections
to the broker. SASL is a framework that supports a variety of authenticat ion methods. For
secure applicat ions, use CRAM-MD5, DIGEST-MD5, or GSSAPI (Kerberos) mechanisms. The
ANONYMOUS mechanism is not secure. The PLAIN mechanism is secure only when used
together with SSL.

18.3. SASL Support in Windows Clients
The Windows Qpid C++ client supports only ANONYMOUS and PLAIN authenticat ion mechanisms.

This is likely to change in a future release.

18.4. Enable Kerberos authentication
For Kerberos authenticat ion, if the user running the program is already authenticated, for
example, if they are using kinit, there is no need to supply a user name or password. If you are
using another form of authenticat ion, or are not already authenticated with Kerberos, you can
supply these as connection options:

connection.setOption("username", "mick");
connection.setOption("password", "pa$$word");

18.5. Enable SSL
Encryption and signing are done using SSL (they can also be done using SASL). To enable SSL,
set the transport connection option to ssl:

connection.setOption("transport", "ssl");

18.6. SSL Client Environment Variables for C++
Clients

Chapter 19. The AMQP 0-10 mapping

171

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8062-249278+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Security+features+provided+by+Qpid&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8118-371672+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Authentication&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=13329-375474+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=SASL+Support+in+Windows+Clients&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8064-249294+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Enable+Kerberos+authentication&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8034-250629+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Enable+SSL&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Table 18.1. SSL Client Environment Variables for C++ clients

SSL Client Options for C++ clients
SSL_USE_EXPORT_POLICY Use NSS export policy
SSL_CERT_PASSWORD_FILE PATH File containing password to use for accessing

cert ificate database
SSL_CERT_DB PATH Path to directory containing cert ificate

database
SSL_CERT_NAME NAME Name of the cert ificate to use. When SSL

client authenticat ion is enabled, a cert ificate
name should normally be provided.

Red Hat Enterprise MRG 2 Messaging Programming Reference

172

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8075-249286+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=SSL+Client+Environment+Variables+for+C%2B%2B+Clients&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Chapter 19. The AMQP 0-10
mapping
19.1. The AMQP 0-10 mapping
The interaction with the broker triggered by creating a sender or receiver depends on what the
specified address resolves to. Where the node type is not specified in the address, the client
queries the broker to determine whether it refers to a queue or an exchange.

When sending to a queue, the queue's name is set as the routing key and the message is
transferred to the default (or nameless) exchange. When sending to an exchange, the
message is transferred to that exchange and the routing key is set to the message subject if
one is specified. A default subject may be specified in the target address. The subject may
also be set on each message individually to override the default if required. In each case any
specified subject is also added as a qpid.subject entry in the application-headers field of
the message-properties.

When receiving from a queue, any subject in the source address is currently ignored. The client
sends a message-subscribe request for the queue in question. The accept-mode is determined
by the reliability option in the link propert ies; for unreliable links the accept-mode is none, for
reliable links it is explicit . The default for a queue is reliable. The acquire-mode is determined by
the value of the mode option. If the mode is set to browse the acquire mode is not-acquired,
otherwise it is set to pre-acquired. The exclusive and arguments fields in the message-
subscribe command can be controlled using the x-subscribe map.

When receiving from an exchange, the client creates a subscript ion queue and binds that to
the exchange. The subscript ion queue's arguments can be specified using the x-declare map
within the link propert ies. The reliability option determines most of the other parameters. If the
reliability is set to unreliable then an auto-deleted, exclusive queue is used meaning that if
the client or connection fails messages may be lost. For exactly-once the queue is not set to
be auto-deleted. The durability of the subscript ion queue is determined by the durable option
in the link propert ies. The binding process depends on the type of the exchange the source
address resolves to.

For a topic exchange, if no subject is specified and no x-bindings are defined for the link,
the subscript ion queue is bound using a wildcard matching any routing key (thus satisfying
the expectation that any message sent to that address will be received from it). If a
subject is specified in the source address however, it is used for the binding key (this means
that the subject in the source address may be a binding pattern including wildcards).
For a fanout exchange the binding key is irrelevant to matching. A receiver created from a
source address that resolves to a fanout exchange receives all messages sent to that
exchange regardless of any subject the source address may contain. An x-bindings
element in the link propert ies should be used if there is any need to set the arguments to
the bind.
For a direct exchange, the subject is used as the binding key. If no subject is specified an
empty string is used as the binding key.
For a headers exchange, if no subject is specified the binding arguments simply contain an
x-match entry and no other entries, causing all messages to match. If a subject is specified
then the binding arguments contain an x-match entry set to all and an entry for
qpid.subject whose value is the subject in the source address (this means the subject in
the source address must match the message subject exactly). For more control the x-
bindings element in the link propert ies must be used.
For the XML exchange, if a subject is specified it is used as the binding key and an XQuery is

Chapter 19. The AMQP 0-10 mapping

173

Report a bug

defined that matches any message with that value for qpid.subject. Again this means that
only messages whose subject exactly match that specified in the source address are
received. If no subject is specified then the empty string is used as the binding key with an
xquery that will match any message (this means that only messages with an empty string
as the routing key will be received). For more control the x-bindings element in the link
propert ies must be used. A source address that resolves to the XML exchange must
contain either a subject or an x-bindings element in the link propert ies as there is no way at
present to receive any message regardless of routing key.

If an x-bindings list is present in the link options a binding is created for each element within
that list . Each element is a nested map that may contain values named queue, exchange, key, or
arguments. If the queue value is absent the queue name the address resolves to is implied. If
the exchange value is absent the exchange name the address resolves to is implied.

The following table shows how Qpid Messaging API message propert ies are mapped to AMQP 0-
10 message propert ies and delivery propert ies. In this table msg refers to the Message class
defined in the Qpid Messaging API, mp refers to an AMQP 0-10 message-properties struct, and
dp refers to an AMQP 0-10 delivery-properties struct.

Table 19.1. Mapping to AMQP 0-10 Message Properties

Python API C++ API AMQP 0-10 Property
 msg.id msg.{get,set}MessageId() mp.message_id

 msg.subject msg.{get,set}Subject() mp.application_headers
["qpid.subject"]

 msg.user_id msg.{get,set}UserId() mp.user_id

 msg.reply_to msg.{get,set}ReplyTo() mp.reply_to
 msg.correlation_id msg.{get,set}Correlation

Id()
 mp.correlation_id

 msg.durable msg.{get,set}Durable() dp.delivery_mode ==
delivery_mode.persistent

 msg.priority msg.{get,set}Priority() dp.priority

 msg.ttl msg.{get,set}Ttl() dp.ttl

 msg.redelivered msg.{get,set}Redelivered
()

 dp.redelivered

 msg.properties msg.{get,set}Properties(
)

 mp.application_headers

 msg.content_type msg.{get,set}ContentType
()

 mp.content_type

19.2. AMQ 0-10 Message Property Keys
The Qpid Messaging API recognizes special message property keys and automatically provides
a mapping to their corresponding AMQP 0-10 definit ions.

For example, when sending a message, if the propert ies contain an entry for x-amqp-0-10.app-
id, its value will be used to set the message-properties.app-id property in the outgoing

[a] [b]

[c]

[d]

The .NET Binding for C++ Messaging provides all the message and delivery properties described in the C++ API.[a]
In these entries, mp refers to an AMQP message property, and dp refers to an AMQP delivery property.[b]
The reply_to is converted from the protocol representation into an address.[c]
Note that msg.durable is a boolean, not an enum.[d]

Red Hat Enterprise MRG 2 Messaging Programming Reference

174

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8166-330963+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=The+AMQP+0-10+mapping&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

message. Likewise, if an incoming message has message-properties.app-id set, its value can
be accessed via the x-amqp-0-10.app-id message property key.

Similarly, when sending a message, if the propert ies contain an entry for x-amqp-0-10.content-
encoding, its value will be used to set the message-properties.content-encoding property in
the outgoing message. Likewise, if an incoming message has message-properties.content-
encoding set, its value can be accessed via the x-amqp-0-10.content-encoding message
property key.

The routing key (delivery-properties.routing-key) in an incoming messages can be
accessed via the x-amqp-0-10.routing-key message property.

19.3. AMQP Routing Key and Message Subject
Whenever you send a message using the Qpid Messaging API in Red Hat Enterprise Messaging,
the x-amqp-0-10.routing-key property is set to the value of the message subject, with one
exception.

Any message that has a subject explicit ly set has its subject preserved and the AMQP routing
key set to the message subject when it is sent.

When a message has no subject manually set, its subject is set by the sender, if the sender's
destination address contains a subject.

Take for example, the following sender:

sender = session.sender('amq.topic/SubjectX')

Given these two messages:

msg1 = Message('A message with no subject')

msg2 = Message('A message with a subject')
msg2.subject = 'SubjectY'

msg1 has its subject and AMQP routing key set to 'SubjectX'. msg2 retains its subject
'SubjectY', and has its AMQP routing key set to 'SubjectY'.

There are only two other cases.

The first is when a message with no subject is sent via a sender with no subject in its
destination address. For example, in Python:

sender = session('amq.topic')
msg = Message('No subject, and none assigned by the sender')
sender.send(msg)

In this case the message is sent with a blank subject and a blank AMQP routing key.

The second, and only exceptional case, is when a message with a blank subject and a manually
assigned AMQP routing key is sent via a sender with no subject in its dest ination address. For
example, in Python:

sender = session('amq.topic')
msg = Message('No subject, but a manually assigned AMQP routing key')
msg.properties['x-amqp-0-10.routing-key'] = 'amqp-SubjectX'
sender.send(msg)

Chapter 19. The AMQP 0-10 mapping

175

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8061-249119+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=AMQ+0-10+Message+Property+Keys&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

In this case, the message is sent with a blank subject, and the arbitrary AMQP routing key
assigned.

Note that in this case the message will not route in a Red Hat Enterprise Messaging topic
exchange. The amqp-0-10.routing-key may be useful in an interoperability scenario, but in Red
Hat Enterprise Messaging the message subject is used for routing.

The following Python program demonstrates the various permutations of interaction between
message subject, sender destination address subject, and message routing key:

Red Hat Enterprise MRG 2 Messaging Programming Reference

176

import sys
from qpid.messaging import *

This program demonstrates that the x-amqp-0-10.routing-key
(1) is (re)set to the message subject when the message has a subject or
is sent via a sender that has a subject
(2) is not a valid basis for routing in a topic exchange
- the topic exchange will not route a message to a queue

def sendmsg(msg, note = ''):
 global rxplain, rxsubject, txplain, txsubject, ssn, testcount

 msg.properties['sender'] = 'Plain Sender'
 txplain.send(msg)

 msg.properties['sender'] = 'SubjectX Sender'
 txsubject.send(msg)

 if testcount > 0:
 x = raw_input('\nPress Enter for the next test message')
 print '\n==\n'

 testcount = testcount + 1
 print '\nScenario ' + str(testcount)
 print '\nSent message:\n'
 subject = 'Blank'
 if msg.subject:
 subject = msg.subject
 print 'Subject:\t' + subject
 routekey = 'Blank'
 if 'x-amqp-0-10.routing-key' in msg.properties:
 routekey = msg.properties['x-amqp-0-10.routing-key']
 print 'Routing Key:\t' + routekey

 msgcount = 0

 print '\nThe queue listening for all messages received:'
 try:
 while True:
 rxmsg = rxplain.fetch(timeout = 1)
 subject ='Blank'
 if rxmsg.subject:
 subject = rxmsg.subject
 routekey = 'Blank'
 if 'x-amqp-0-10.routing-key' in rxmsg.properties:
 routekey = rxmsg.properties['x-amqp-0-10.routing-key']
 print '\nSubject:\t' + subject
 print 'Routing Key:\t' + routekey
 print 'Sent via:\t' + rxmsg.properties['sender']
 msgcount = 1
 ssn.acknowledge(rxmsg)
 except:
 pass

 if msgcount == 0:
 print 'Nothing\n'
 else:
 msgcount = 0

 print '\nThe queue listening for SubjectX messages received:'
 try:
 while True:
 rxmsg = rxsubject.fetch(timeout = 1)
 subject ='Blank'

Chapter 20. Using the Qpid JMS client

177

 if rxmsg.subject:
 subject = rxmsg.subject
 routekey = 'Blank'
 if 'x-amqp-0-10.routing-key' in rxmsg.properties:
 routekey = rxmsg.properties['x-amqp-0-10.routing-key']
 print '\nSubject:\t' + subject
 print 'Routing Key:\t' + routekey
 print 'Sent via:\t' + rxmsg.properties['sender']
 msgcount = 1
 ssn.acknowledge(rxmsg)
 except:
 pass

 if msgcount == 0:
 print 'Nothing\n'

 if note != '':
 print '\nNote: ' + note + "\n"

connection = Connection("localhost:5672")
connection.open()

try:
 ssn = connection.session()

 # we create our receivers here so that queues are created to hold the messages
sent
 rxplain = ssn.receiver("amq.topic")
 rxsubject = ssn.receiver("amq.topic/SubjectX")

 txplain = ssn.sender("amq.topic")
 txsubject = ssn.sender("amq.topic/SubjectX")

 testcount = 0

 msg = Message("Plain message, no subject")
 sendmsg(msg, "a subject sender writes the subject and routing key when a message
has no subject, a plain sender does not")

 msg = Message("Message with subject")
 msg.subject = "SubjectX"
 sendmsg(msg, "a plain sender writes the routing key if the message has a
subject")

 msg = Message("Message with a different subject")
 msg.subject = "SubjectY"
 sendmsg(msg, "a subject sender does not rewrite a subject, both senders use the
message subject to write routing key")

 msg = Message("Message with routing key")
 msg.properties["x-amqp-0-10.routing-key"] = "SubjectX"
 sendmsg(msg, "a routing key is not sufficient to route to a queue - the match is
on subject")

 msg = Message("Message with different routing key")
 msg.properties["x-amqp-0-10.routing-key"] = "SubjectY"
 sendmsg(msg, "the only case where you can manually set a non-blank routing key is
a message with a blank subject, sent via a plain sender")

 msg = Message("Message with different routing key and subject")
 msg.properties["x-amqp-0-10.routing-key"] = "SubjectY"
 msg.subject = "SubjectZ"
 sendmsg(msg, "all messages with subjects and all messages sent via a subject
sender have their routing key rewritten")

Red Hat Enterprise MRG 2 Messaging Programming Reference

178

Report a bug

Report a bug

finally:
 connection.close()

19.4. Using AMQ 0-10 Message Property Keys for
Timestamping
If the t imestamp delivery property is set in an incoming message (delivery-
properties.timestamp), the t imestamp value can be accessed using the x-amqp-0-
10.timestamp message property.

See Also:

Chapter 12, Message Timestamping

Chapter 20. Using the Qpid JMS client

179

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=10289-166671+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=AMQP+Routing+Key+and+Message+Subject&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8043-249126+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Using+AMQ+0-10+Message+Property+Keys+for+Timestamping&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Chapter 20. Using the Qpid
JMS client
20.1. Apache Qpid JNDI Properties for AMQP
Messaging
Apache Qpid supports the following JNDI propert ies:

connectionfactory.<jndiname>
The Connection URL that the connection factory uses to perform connections.

queue.<jndiname>
A JMS queue. Implemented as an amq.direct exchange in Apache Qpid.

topic.<jndiname>
A JMS topic. Implemented as an amq.topic exchange in Apache Qpid.

destination.<jndiname>
Can be used for defining all amq destinations, queues, topics and header matching, using an
address string (or a binding URL, for backward-compatibility with earlier implementations).

20.2. JNDI Properties for Apache Qpid
Apache Qpid defines JNDI propert ies that can be used to specify JMS Connections and
Destinations. This is a JNDI propert ies file example:

java.naming.factory.initial
 = org.apache.qpid.jndi.PropertiesFileInitialContextFactory

connectionfactory.[jndiname] = [ConnectionURL]
connectionfactory.qpidConnectionfactory
 = amqp://guest:guest@clientid/test?brokerlist='tcp://localhost:5672'
destination.[jndiname] = [address_string]
destination.topicExchange = amq.topic

20.3. Connection URLs
In JNDI propert ies, a Connection URL specifies propert ies for a connection. The format for a
Connection URL is:

amqp://[<user>:<pass>@][<clientid>]<virtualhost>[?<option>='<value>'[&<option>='
<value>']]

Red Hat Enterprise MRG 2 Messaging Programming Reference

180

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8110-249154+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Apache+Qpid+JNDI+Properties+for+AMQP+Messaging&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8052-249158+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=JNDI+Properties+for+Apache+Qpid&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

For instance, the following Connection URL specifies a user name, a password, a client ID, a
virtual host ("test"), a broker list with a single broker, and a TCP host with the host name
localhost using port 5672:

amqp://username:password@clientid/test?brokerlist='tcp://localhost:5672'

Apache Qpid supports the following propert ies in Connection URLs:

Table 20.1. Connection URL Properties

Option Type Description
brokerlist Section 20.3, “ Broker list URL

”
The broker to use for this
connection. In the current
release, precisely one broker
must be specified.

maxprefetch Integer The maximum number of pre-
fetched messages per
destination.

sync_publish {'persistent' | 'all'} A sync command is sent
after every persistent
message to guarantee that it
has been received; if the
value is 'persistent', this is
done only for persistent
messages.

sync_ack Boolean A sync command is sent
after every acknowledgment
to guarantee that it has been
received.

use_legacy_map_msg_forma
t

Boolean If you are using JMS Map
messages and deploying a
new client with any JMS client
older than 0.7 release, you
must set this to true to
ensure the older clients can
understand the map
message encoding.

failover {'roundrobin' |
'failover_exchange' |
'singlebroker'}

If roundrobin is selected it
will try each broker given
in the broker list .
If failover_exchange is
selected it connects to
the init ial broker given in
the broker URL and will
receive membership
updates via the failover
exchange.
If singlebroker is selected
it connects to the init ial
broker only and does not
support failover.

Broker list URL
Broker lists are specified using a URL in this format:

Chapter 20. Using the Qpid JMS client

181

brokerlist=<transport>://<host>[:<port>](?<param>=<value>)?(&<param>=<value>)*

For instance, this is a typical broker list URL:

brokerlist='tcp://localhost:5672'

The following broker list URL options are supported:

Red Hat Enterprise MRG 2 Messaging Programming Reference

182

Table 20.2. Broker List URL Options

Option Type Description
heartbeat Integer Frequency of heartbeat

messages (in seconds)
sasl_mechs -- For secure applicat ions, we

suggest CRAM-MD5, DIGEST-
MD5, or GSSAPI. The
ANONYMOUS method is not
secure. The PLAIN method is
secure only when used
together with SSL. For
Kerberos, sasl_mechs must
be set to GSSAPI,
sasl_protocol must be set
to the principal for the qpidd
broker, e.g. qpidd/, and
sasl_server must be set to
the host for the SASL server,
e.g. sasl.com. SASL External
is supported using SSL
cert ificat ion, e.g.
ssl='true'&sasl_mechs='E
XTERNAL'

sasl_encryption Boolean If sasl_encryption='true',
the JMS client attempts to
negotiate a security layer
with the broker using GSSAPI
to encrypt the connection.
Note that for this to happen,
GSSAPI must be selected as
the sasl_mech.

ssl Boolean If ssl='true', the JMS client
will encrypt the connection
using SSL.

tcp_nodelay Boolean If tcp_nodelay='true', TCP
packet batching is disabled.

sasl_protocol -- Used only for Kerberos.
sasl_protocol must be set
to the principal for the qpidd
broker, e.g. qpidd/

sasl_server -- For Kerberos, sasl_mechs
must be set to GSSAPI,
sasl_server must be set to
the host for the SASL server,
e.g. sasl.com.

trust_store String Path to Kerberos trust store
trust_store_password String Kerberos trust store

password
key_store String Path to Kerberos key store
key_store_password String Kerberos key store password
ssl_verify_hostname Boolean When using SSL you can

enable hostname verificat ion
by using
"ssl_verify_hostname=true

Chapter 20. Using the Qpid JMS client

183

Report a bug

Report a bug

" in the broker URL.
ssl_cert_alias String If mult iple cert ificates are

present in the keystore, the
alias will be used to extract
the correct cert ificate.

20.4. Java JMS Message Properties
The following table shows how Qpid Messaging API message propert ies are mapped to AMQP 0-
10 message propert ies and delivery propert ies.

In this table msg refers to the Message class defined in the Qpid Messaging API, mp refers to an
AMQP 0-10 message-properties struct, and dp refers to an AMQP 0-10 delivery-properties
struct.

Table 20.3. Java JMS Mapping to AMQP 0-10 Message Properties

Java JMS Message Property AMQP 0-10 Property
JMSMessageID mp.message_id

qpid.subject mp.application_headers["qpid.subject"]

JMSXUserID mp.user_id

JMSReplyTo mp.reply_to
JMSCorrelat ionID mp.correlation_id

JMSDeliveryMode dp.delivery_mode

JMSPriority dp.priority

JMSExpirat ion dp.ttl
JMSRedelivered dp.redelivered

JMS Propert ies mp.application_headers

JMSType mp.content_type

20.5. JMS MapMessage Types
Qpid supports the Java JMS MapMessage interface, which provides support for maps in
messages. The following code shows how to send a MapMessage in Java JMS.

[a]

[b]

[c]

This is a custom JMS property, set automatically by the Java JMS client implementation.[a]
The reply_to is converted from the protocol representation into an address.[b]
JMSExpiration = dp.ttl + currentTime[c]

Red Hat Enterprise MRG 2 Messaging Programming Reference

184

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8117-243058+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Connection+URLs&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8133-249174+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Java+JMS+Message+Properties&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Example 20.1. Sending a Java JMS MapMessage

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import javax.jms.Connection;
import javax.jms.Destination;
import javax.jms.MapMessage;
import javax.jms.MessageProducer;
import javax.jms.Session;

import org.apache.qpid.client.AMQAnyDestination;
import org.apache.qpid.client.AMQConnection;

import edu.emory.mathcs.backport.java.util.Arrays;

// !!! SNIP !!!

MessageProducer producer = session.createProducer(queue);

MapMessage m = session.createMapMessage();
m.setIntProperty("Id", 987654321);
m.setStringProperty("name", "Widget");
m.setDoubleProperty("price", 0.99);

List<String> colors = new ArrayList<String>();
colors.add("red");
colors.add("green");
colors.add("white");
m.setObject("colours", colors);

Map<String,Double> dimensions = new HashMap<String,Double>();
dimensions.put("length",10.2);
dimensions.put("width",5.1);
dimensions.put("depth",2.0);
m.setObject("dimensions",dimensions);

List<List<Integer>> parts = new ArrayList<List<Integer>>();
parts.add(Arrays.asList(new Integer[] {1,2,5}));
parts.add(Arrays.asList(new Integer[] {8,2,5}));
m.setObject("parts", parts);

Map<String,Object> specs = new HashMap<String,Object>();
specs.put("colours", colors);
specs.put("dimensions", dimensions);
specs.put("parts", parts);
m.setObject("specs",specs);

producer.send(m);

The following table shows the data types that can be sent in a MapMessage, and the
corresponding data types that will be received by clients in Python or C++.

Chapter 20. Using the Qpid JMS client

185

Report a bug

Report a bug

Table 20.4. Java Data Types in Maps

 Java Data Type ? Python ? C++

 boolean bool bool

 short int | long int16

 int int | long int32

 long int | long int64

 float float float

 double float double

 java.lang.String unicode std::string

 java.util.UUID uuid qpid::types::Uuid

 java.util.Map dict Variant::Map

 java.util.List list Variant::List

20.6. JMS ListMessage
MRG 2.3 introduces a JMS ListMessage type.

On the receiver side, List messages are exposed via 3 interfaces:

1. javax.jms.StreamMessage
2. javax.jms.MapMessage
3. org.apache.qpid.jms.ListMessage

On the sender side, List messages can be sent two ways:

1. org.apache.qpid.jms.ListMessage - by creating it via createListMessage() in
org.apache.qpid.jms.Session.
Example:

ListMessage msg = ((org.apache.qpid.jms.Session)ssn).createListMessage();

2. If you set -Dqpid.use_legacy_stream_message=false any stream message you create
will be encoded as a list message.
Example:

StreamMessage msg = jmsSession.createStreamMessage();

For code examples, refer to this sample code.

20.7. JMS Client Logging
The JMS Client logging is handled using the Simple Logging Facade for Java (SLF4J). SLF4J is a
facade that delegates to other logging systems like log4j or JDK 1.4 logging.

When using the log4j binding, set the log level for org.apache.qpid. Otherwise log4j will default
to DEBUG which will degrade performance considerably due to excessive logging. The

[a]

In Qpid, maps can nest. This goes beyond the functionality required by the JMS specification.[a]

Red Hat Enterprise MRG 2 Messaging Programming Reference

186

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8058-249182+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=JMS+MapMessage+Types&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/src/test/java/org/apache/qpid/client/message/AMQPEncodedListMessageUnitTest.java
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=13324-371185+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=JMS+ListMessage&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
http://www.slf4j.org/

Report a bug

Report a bug

recommended logging level for production is WARN.

The following example shows the logging propert ies used to configure client logging for SLF4J
using the log4j binding. These propert ies can be placed in a log4j.properties file and placed in
the CLASSPATH, or they can be set explicit ly using the -Dlog4j.configuration property.

Example 20.2. log4j Logging Properties

log4j.logger.org.apache.qpid=WARN, console
log4j.additivity.org.apache.qpid=false

log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.Threshold=all
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%t %d %p [%c{4}] %m%n

20.8. JMS Client Configuration

20.8.1. Configuration Methods and Granularity
The Qpid JMS Client allows several configuration options to customize its behavior at different
levels of granularity.

JVM level using JVM arguments - Affects all connections, sessions, consumers and producers
created within the JVM.
Example: The -dmax_prefetch=1000 property specifies the message credits to use.
Connection level using connection or broker propert ies - Affects the respective connection
and sessions, consumers and produces created by that connection.
Example: The amqp://guest:guest@test/test?max_prefetch='1000'
&brokerlist='tcp://localhost:5672' property specifies the message credits to use.
This overrides any value specified via the JVM argument max_prefetch.
Destination level using addressing options - Affects the producer(s) and consumer(s)
created using the respective destination.
Example: my-queue; {create: always, link:{capacity: 10}} where capacity option
specifies the message credits to use. This overrides any connection level configuration.

20.8.2. Qpid JVM Arguments

Chapter 20. Using the Qpid JMS client

187

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8151-323031+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=JMS+Client+Logging&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8379-262680+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Configuration+Methods+and+Granularity&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Table 20.5. Configuration Options For Connection Behavior

Property Name Type Default Value Description
qpid.amqp.version string 0-10 Sets the AMQP

version to be used -
currently supports 0-
8, 0-9, 0-91, and 0-
10. The client will
begin negotiat ion at
the specified version
and only negotiate
downwards if the
broker does not
support the specified
version.

qpid.heartbeat int 120 (seconds) The heartbeat
interval in seconds.
Two consective
misssed heartbeats
will result in the
connection t iming
out. This can also be
set per connection.

ignore_setclientID boolean false If a client ID specified
in the connection URL
it is used, otherwise
an ID is generated. If
an ID is specified
after it has been
generated Qpid will
throw an exception.
Sett ing this property
to 'true' disables that
check and allows you
to set a client ID at
any t ime.

Table 20.6. Configuration Options For Session Behavior

Property Name Type Default Value Description
qpid.session.comma
nd_limit

int 65536 Limits the number of
unacknowledged
commands.

qpid.session.byte_
limit

int 1048576 Limits the number of
unacknowledged
commands in bytes.

qpid.use_legacy_ma
p_message

boolean false Uses the old map
message encoding.
By default the map
messages are
encoded using the 0-
10 map encoding.
This can also be set
per connection as
well.

Red Hat Enterprise MRG 2 Messaging Programming Reference

188

Table 20.7. Configuration Options For Consumer Behavior

Property Name Type Default Value Description
max_prefetch int 500 Maximum number of

messages to credits.
Can also be set per
connection or per
destination.

qpid.session.max_a
ck_delay

long 1000 (ms) Timer interval to flush
message acks in
buffer when using
AUTO_ACK and
DUPS_OK.

sync_ack boolean false If set, each message
will be acknowledged
synchronously. When
using AUTO_ACK
mode, set this to
"true". Can also be
set per connection.

Table 20.8. Configuration Options For Producer Behavior

Property Name Type Default Value Description
sync_publish string - Sends messages

synchronously. Valid
values are
persistent or all.
Can also be set per
connection.

Table 20.9. Configuration Options For Threading

Property Name Type Default Value Description
qpid.thread_factor
y

string org.apache.qpid.thr
ead.DefaultThreadF
actory

Specifies the thread
factory to use. If
using a real t ime JVM,
set to
org.apache.qpid.th
read.RealtimeThrea
dFactory.

qpid.rt_thread_pri
ority

int 20 Specifies the priority
(1-99) for realt ime
threads created by
the realt ime thread
factory.

Chapter 21. .NET Binding for Qpid C++ Messaging

189

Table 20.10. Configuration Options For I/O

Property Name Type Default Value Description
qpid.transport string org.apache.qpid.tr

ansport.network.io.
IoNetworkTransport

The transport
implementation to be
used. You can also
specify the
org.apache.qpid.tr
ansport.network.Ne
tworkTransport
transport
mechanism.

qpid.sync_op_timeo
ut

long 60000 (milliseconds) The length of t ime to
wait for a
synchronous
operation to
complete. For
compatibility with
older clients, use
amqj.default_syncw
rite_timeout.

amqj.tcp_nodelay boolean false Sets the
TCP_NODELAY
property of the
underlying socket.
Can also be set per
connection.

Table 20.11. Configuration Options For Security

Property Name Type Default Value Description
qpid.sasl_mechs string PLAIN The SASL mechanism

used. More than one
can be specified
using a comma
separated list .
Supported values are
PLAIN, GSSAPI, and
EXTERNAL.

qpid.sasl_protocol string AMQP When using GSSAPI
as the SASL
mechanism,
sasl_protocol must
be set to the
principal for the qpidd
broker.

qpid.sasl_server_n
ame

string localhost When using GSSAPI
as the SASL
mechanism,
sasl_server must
be set to the host
for the SASL server.

Red Hat Enterprise MRG 2 Messaging Programming Reference

190

Report a bug

Table 20.12. JVM properties for GSSAPI as the SASL mechanism

Property Name Type Default Value Description
javax.security.aut
h.useSubjectCredsO
nly

boolean true If set to 'false',
forces the SASL
GASSPI client to
obtain kerberos
credentials explicit ly.

java.security.auth
.login.config

string - Specifies the JASS
configuration file.

Table 20.13. Configuration options for SSL connections

Property Name Type Default Value Description
qpid.ssl_timeout long 60000 Timeout value used

by the Java SSL
engine when wait ing
on operations.

qpid.ssl.keyStoreC
ertType

SunX509 The cert ificate type.

qpid.ssl.trustStor
eCertType

string SunX509 The cert ificate type.

Table 20.14. JVM Properties for SSL connections

Property Name Type Default Value Description
javax.net.ssl.keyS
tore

string jvm default Specifies the key
store path.

javax.net.ssl.keyS
torePassword

string jvm default Specifies the key
store password.

javax.net.ssl.trus
tStore

string jvm default Specifies the trust
store path.

javax.net.ssl.trus
tStorePassword

string jvm default Specifies the trust
store password.

Chapter 21. .NET Binding for Qpid C++ Messaging

191

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8378-262767+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Qpid+JVM+Arguments&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Report a bug

Chapter 21. .NET Binding
for Qpid C++ Messaging
21.1. .NET Binding for the C++ Messaging Client
Examples
Table 21.1. Client and Server Examples

Example Name Example Description
csharp.example.server Creates a receiver and listens for messages.

Upon receipt, the content of the message is
converted to upper case and forwarded to
the received message's ReplyTo address.

csharp.example.client Sends a series of messages to the server
and prints the original message content and
the received message content.

See Also:

Section 3.3.3.2, “Windows SDK Contents”

21.2. .NET Binding Class Mapping to Underlying
C++ Messaging API
Table 21.2. Map Sender and Receiver Examples

Example Name Example Description
csharp.map.receiver Creates a receiver and listens for a map

message. Upon receipt, the message is
decoded and displayed on the console.

csharp.map.sender Creates a map message and sends it to
map.receiver. The map message contains
values for every supported .NET messaging
binding data type.

See Also:

Section 3.3.3.2, “Windows SDK Contents”

21.3. .NET Binding for the C++ Messaging API
Class: Address

Red Hat Enterprise MRG 2 Messaging Programming Reference

192

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8132-246363+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=.NET+Binding+for+the+C%2B%2B+Messaging+Client+Examples&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8129-246366+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=.NET+Binding+Class+Mapping+to+Underlying+C%2B%2B+Messaging+API&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Table 21.3. .NET Binding for the C++ Messaging API Class: Address

.NET Binding Class: Address
Languag
e

Syntax

C++ class Address

.NET public ref class Address

Constructor
C++ Address();

.NET public Address();

Constructor
C++ Address(const std::string& address);

.NET public Address(string address);

Constructor
C++ Address(const std::string& name, const std::string& subject, const

qpid::types::Variant::Map& options, const std::string& type = "");

.NET public Address(string name, string subject, Dictionary<string, object>
options);

.NET public Address(string name, string subject, Dictionary<string, object>
options, string type);

Copy constructor
C++ Address(const Address& address);

.NET public Address(Address address);

Destructor
C++ ~Address();

.NET ~Address();

Finalizer
C++ not applicable
.NET !Address();

Copy assignment operator
C++ Address& operator=(const Address&);

.NET public Address op_Assign(Address rhs);

Property: Name
C++ const std::string& getName() const;

C++ void setName(const std::string&);

.NET public string Name { get; set; }

Property: Subject
C++ const std::string& getSubject() const;

C++ void setSubject(const std::string&);

.NET public string Subject { get; set; }

Property: Options
C++ const qpid::types::Variant::Map& getOptions() const;

C++ qpid::types::Variant::Map& getOptions();

C++ void setOptions(const qpid::types::Variant::Map&);

.NET public Dictionary<string, object> Options { get; set; }

Property: Type
C++ std::string getType() const;

Chapter 21. .NET Binding for Qpid C++ Messaging

193

Report a bug

C++ void setType(const std::string&);

.NET public string Type { get; set; }

Miscellaneous
C++ std::string str() const;

.NET public string ToStr();

Miscellaneous
C++ operator bool() const;

.NET not applicable
Miscellaneous

C++ bool operator !() const;

.NET not applicable

See Also:

Section 3.3.3.2, “Windows SDK Contents”

21.4. .NET Binding for the C++ Messaging API
Class: Connection

Red Hat Enterprise MRG 2 Messaging Programming Reference

194

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8145-249195+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=.NET+Binding+for+the+C%2B%2B+Messaging+API+Class%3A+Address&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Table 21.4. .NET Binding for the C++ Messaging API Class: Connection

.NET Binding Class: Connection
Languag
e

Syntax

C++ class Connection : public qpid::messaging::Handle<ConnectionImpl>

.NET public ref class Connection

Constructor
C++ Connection(ConnectionImpl* impl);

.NET not applicable
Constructor

C++ Connection();

.NET not applicable
Constructor

C++ Connection(const std::string& url, const qpid::types::Variant::Map&
options = qpid::types::Variant::Map());

.NET public Connection(string url);

.NET public Connection(string url, Dictionary<string, object> options);

Constructor
C++ Connection(const std::string& url, const std::string& options);

.NET public Connection(string url, string options);

Copy Constructor
C++ Connection(const Connection&);

.NET public Connection(Connection connection);

Destructor
C++ ~Connection();

.NET ~Connection();

Finalizer
C++ not applicable
.NET !Connection();

Copy assignment operator
C++ Connection& operator=(const Connection&);

.NET public Connection op_Assign(Connection rhs);

Method: SetOption
C++ void setOption(const std::string& name, const qpid::types::Variant&

value);

.NET public void SetOption(string name, object value);

Method: open
C++ void open();

.NET public void Open();

Property: isOpen
C++ bool isOpen();

.NET public bool IsOpen { get; }

Method: close
C++ void close();

.NET public void Close();

Method: createTransactionalSession

Chapter 21. .NET Binding for Qpid C++ Messaging

195

Report a bug

C++ Session createTransactionalSession(const std::string& name =
std::string());

.NET public Session CreateTransactionalSession();

.NET public Session CreateTransactionalSession(string name);

Method: createSession
C++ Session createSession(const std::string& name = std::string());

.NET public Session CreateSession();

.NET public Session CreateSession(string name);

Method: getSession
C++ Session getSession(const std::string& name) const;

.NET public Session GetSession(string name);

Property: AuthenticatedUsername

C++ std::string getAuthenticatedUsername();

.NET public string GetAuthenticatedUsername();

See Also:

Section 3.3.3.2, “Windows SDK Contents”

21.5. .NET Binding for the C++ Messaging API
Class: Duration

Red Hat Enterprise MRG 2 Messaging Programming Reference

196

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8149-249197+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=.NET+Binding+for+the+C%2B%2B+Messaging+API+Class%3A+Connection&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Table 21.5. .NET Binding for the C++ Messaging API Class: Duration

.NET Binding Class: Duration
Languag
e

Syntax

C++ class Duration

.NET public ref class Duration

Constructor
C++ explicit Duration(uint64_t milliseconds);

.NET public Duration(ulong mS);

Copy constructor
C++ not applicable
.NET public Duration(Duration rhs);

Destructor
C++ default
.NET default

Finalizer
C++ not applicable
.NET default

Property: Milliseconds
C++ uint64_t getMilliseconds() const;

.NET public ulong Milliseconds { get; }

Operator: *
C++ Duration operator*(const Duration& duration, uint64_t multiplier);

.NET public static Duration operator *(Duration dur, ulong multiplier);

.NET public static Duration Multiply(Duration dur, ulong multiplier);

C++ Duration operator*(uint64_t multiplier, const Duration& duration);

.NET public static Duration operator *(ulong multiplier, Duration dur);

.NET public static Duration Multiply(ulong multiplier, Duration dur);

Constants
C++ static const Duration FOREVER;

C++ static const Duration IMMEDIATE;

C++ static const Duration SECOND;

C++ static const Duration MINUTE;

.NET public sealed class DurationConstants

.NET public static Duration FORVER;

.NET public static Duration IMMEDIATE;

.NET public static Duration MINUTE;

.NET public static Duration SECOND;

See Also:

Section 3.3.3.2, “Windows SDK Contents”

Chapter 21. .NET Binding for Qpid C++ Messaging

197

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8150-249200+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=.NET+Binding+for+the+C%2B%2B+Messaging+API+Class%3A+Duration&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

21.6. .NET Binding for the C++ Messaging API
Class: FailoverUpdates
Table 21.6. .NET Binding for the C++ Messaging API Class: FailoverUpdates

.NET Binding Class: FailoverUpdates
Languag
e

Syntax

C++ class FailoverUpdates

.NET public ref class FailoverUpdates

Constructor
C++ FailoverUpdates(Connection& connection);

.NET public FailoverUpdates(Connection connection);

Destructor
C++ ~FailoverUpdates();

.NET ~FailoverUpdates();

Finalizer
C++ not applicable
.NET !FailoverUpdates();

See Also:

Section 3.3.3.2, “Windows SDK Contents”

21.7. .NET Binding for the C++ Messaging API
Class: Message

Red Hat Enterprise MRG 2 Messaging Programming Reference

198

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8147-249202+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=.NET+Binding+for+the+C%2B%2B+Messaging+API+Class%3A+FailoverUpdates&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Table 21.7. .NET Binding for the C++ Messaging API Class: Message

.NET Binding Class: Message
Languag
e

Syntax

C++ class Message

.NET public ref class Message

Constructor
C++ Message(const std::string& bytes = std::string());

.NET Message();

.NET Message(System::String ^ theStr);

.NET Message(System::Object ^ theValue);

.NET Message(array<System::Byte> ^ bytes);

Constructor
C++ Message(const char*, size_t);

.NET public Message(byte[] bytes, int offset, int size);

Copy Constructor
C++ Message(const Message&);

.NET public Message(Message message);

Copy assignment operator
C++ Message& operator=(const Message&);

.NET public Message op_Assign(Message rhs);

Destructor
C++ ~Message();

.NET ~Message();

Finalizer
C++ not applicable
.NET !Message()

Property: ReplyTo
C++ void setReplyTo(const Address&);

C++ const Address& getReplyTo() const;

.NET public Address ReplyTo { get; set; }

Property: Subject
C++ void setSubject(const std::string&);

C++ const std::string& getSubject() const;

.NET public string Subject { get; set; }

Property: ContentType
C++ void setContentType(const std::string&);

C++ const std::string& getContentType() const;

.NET public string ContentType { get; set; }

Property: MessageId
C++ void setMessageId(const std::string&);

C++ const std::string& getMessageId() const;

.NET public string MessageId { get; set; }

Property: UserId
C++ void setUserId(const std::string&);

C++ const std::string& getUserId() const;

Chapter 21. .NET Binding for Qpid C++ Messaging

199

.NET public string UserId { get; set; }

Property: Correlat ionId
C++ void setCorrelationId(const std::string&);

C++ const std::string& getCorrelationId() const;

.NET public string CorrelationId { get; set; }

Property: Priority
C++ void setPriority(uint8_t);

C++ uint8_t getPriority() const;

.NET public byte Priority { get; set; }

Property: Tt l
C++ void setTtl(Duration ttl);

C++ Duration getTtl() const;

.NET public Duration Ttl { get; set; }

Property: Durable
C++ void setDurable(bool durable);

C++ bool getDurable() const;

.NET public bool Durable { get; set; }

Property: Redelivered
C++ bool getRedelivered() const;

C++ void setRedelivered(bool);

.NET public bool Redelivered { get; set; }

Method: SetProperty
C++ void setProperty(const std::string&, const qpid::types::Variant&);

.NET public void SetProperty(string name, object value);

Property: Propert ies
C++ const qpid::types::Variant::Map& getProperties() const;

C++ qpid::types::Variant::Map& getProperties();

.NET public Dictionary<string, object> Properties { get; set; }

Method: SetContent
C++ void setContent(const std::string&);

C++ void setContent(const char* chars, size_t count);

.NET public void SetContent(byte[] bytes);

.NET public void SetContent(string content);

.NET public void SetContent(byte[] bytes, int offset, int size);

Method: GetContent
C++ std::string getContent() const;

.NET public string GetContent();

.NET public void GetContent(byte[] arr);

.NET public void GetContent(Collection<object> __p1);

.NET public void GetContent(Dictionary<string, object> dict);

Method: GetContentPtr
C++ const char* getContentPtr() const;

.NET not applicable
Property: ContentSize

C++ size_t getContentSize() const;

.NET public ulong ContentSize { get; }

Red Hat Enterprise MRG 2 Messaging Programming Reference

200

Report a bug

Struct: EncodingException
C++ struct EncodingException : qpid::types::Exception

.NET not applicable
Method: decode

C++ void decode(const Message& message, qpid::types::Variant::Map& map,
const std::string& encoding = std::string());

C++ void decode(const Message& message, qpid::types::Variant::List& list,
const std::string& encoding = std::string());

.NET not applicable
Method: encode

C++ void encode(const qpid::types::Variant::Map& map, Message& message,
const std::string& encoding = std::string());

C++ void encode(const qpid::types::Variant::List& list, Message& message,
const std::string& encoding = std::string());

.NET not applicable
Method: AsString

C++ not applicable
.NET public string AsString(object obj);

.NET public string ListAsString(Collection<object> list);

.NET public string MapAsString(Dictionary<string, object> dict);

See Also:

Section 3.3.3.2, “Windows SDK Contents”

21.8. .NET Binding for the C++ Messaging API
Class: Receiver

Chapter 21. .NET Binding for Qpid C++ Messaging

201

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8127-249205+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=.NET+Binding+for+the+C%2B%2B+Messaging+API+Class%3A+Message&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Table 21.8. .NET Binding for the C++ Messaging API Class: Receiver

.NET Binding Class: Receiver
Languag
e

Syntax

C++ class Receiver

.NET public ref class Receiver

Constructor
.NET Constructed object is returned by Session.CreateReceiver

Copy constructor
C++ Receiver(const Receiver&);

.NET public Receiver(Receiver receiver);

Destructor
C++ ~Receiver();

.NET ~Receiver();

Finalizer
C++ not applicable
.NET !Receiver()

Copy assignment operator
C++ Receiver& operator=(const Receiver&);

.NET public Receiver op_Assign(Receiver rhs);

Method: Get
C++ bool get(Message& message, Duration timeout=Duration::FOREVER);

.NET public bool Get(Message mmsgp);

.NET public bool Get(Message mmsgp, Duration durationp);

Method: Get
C++ Message get(Duration timeout=Duration::FOREVER);

.NET public Message Get();

.NET public Message Get(Duration durationp);

Method: Fetch
C++ bool fetch(Message& message, Duration timeout=Duration::FOREVER);

.NET public bool Fetch(Message mmsgp);

.NET public bool Fetch(Message mmsgp, Duration duration);

Method: Fetch
C++ Message fetch(Duration timeout=Duration::FOREVER);

.NET public Message Fetch();

.NET public Message Fetch(Duration durationp);

Property: Capacity
C++ void setCapacity(uint32_t);

C++ uint32_t getCapacity();

.NET public uint Capacity { get; set; }

Property: Available
C++ uint32_t getAvailable();

.NET public uint Available { get; }

Property: Unsett led
C++ uint32_t getUnsettled();

.NET public uint Unsettled { get; }

Red Hat Enterprise MRG 2 Messaging Programming Reference

202

Report a bug

Method: Close
C++ void close();

.NET public void Close();

Property: IsClosed
C++ bool isClosed() const;

.NET public bool IsClosed { get; }

Property: Name
C++ const std::string& getName() const;

.NET public string Name { get; }

Property: Session
C++ Session getSession() const;

.NET public Session Session { get; }

See Also:

Section 3.3.3.2, “Windows SDK Contents”

21.9. .NET Binding for the C++ Messaging API
Class: Sender

Chapter 21. .NET Binding for Qpid C++ Messaging

203

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8142-249212+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=.NET+Binding+for+the+C%2B%2B+Messaging+API+Class%3A+Receiver&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Table 21.9. .NET Binding for the C++ Messaging API Class: Sender

.NET Binding Class: Sender
Languag
e

Syntax

C++ class Sender

.NET public ref class Sender

Constructor
.NET Constructed object is returned by Session.CreateSender

Copy constructor
C++ Sender(const Sender&);

.NET public Sender(Sender sender);

Destructor
C++ ~Sender();

.NET ~Sender();

Finalizer
C++ not applicable
.NET !Sender()

Copy assignment operator
C++ Sender& operator=(const Sender&);

.NET public Sender op_Assign(Sender rhs);

Method: Send
C++ void send(const Message& message, bool sync=false);

.NET public void Send(Message mmsgp);

.NET public void Send(Message mmsgp, bool sync);

Method: Close
C++ void close();

.NET public void Close();

Property: Capacity
C++ void setCapacity(uint32_t);

C++ uint32_t getCapacity();

.NET public uint Capacity { get; set; }

Property: Available
C++ uint32_t getAvailable();

.NET public uint Available { get; }

Property: Unsett led
C++ uint32_t getUnsettled();

.NET public uint Unsettled { get; }

Property: Name
C++ const std::string& getName() const;

.NET public string Name { get; }

Property: Session
C++ Session getSession() const;

.NET public Session Session { get; }

See Also:

Section 3.3.3.2, “Windows SDK Contents”

Red Hat Enterprise MRG 2 Messaging Programming Reference

204

Report a bug

21.10. .NET Binding for the C++ Messaging API
Class: Session

Exchange and Queue Declaration Arguments

205

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8051-249215+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=.NET+Binding+for+the+C%2B%2B+Messaging+API+Class%3A+Sender&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Table 21.10. .NET Binding for the C++ Messaging API Class: Session

Languag
e

Syntax

C++ class Session

.NET public ref class Session

Constructor
.NET Constructed object is returned by Connection.CreateSession

Copy constructor
C++ Session(const Session&);

.NET public Session(Session session);

Destructor
C++ ~Session();

.NET ~Session();

Finalizer
C++ not applicable
.NET !Session()

Copy assignment operator
C++ Session& operator=(const Session&);

.NET public Session op_Assign(Session rhs);

Method: Close
C++ void close();

.NET public void Close();

Method: Commit
C++ void commit();

.NET public void Commit();

Method: Rollback
C++ void rollback();

.NET public void Rollback();

Method: Acknowledge
C++ void acknowledge(bool sync=false);

C++ void acknowledge(Message&, bool sync=false);

.NET public void Acknowledge();

.NET public void Acknowledge(bool sync);

.NET public void Acknowledge(Message __p1);

.NET public void Acknowledge(Message __p1, bool __p2);

Method: Reject
C++ void reject(Message&);

.NET public void Reject(Message __p1);

Method: Release
C++ void release(Message&);

.NET public void Release(Message __p1);

Method: Sync
C++ void sync(bool block=true);

.NET public void Sync();

.NET public void Sync(bool block);

Property: Receivable

Red Hat Enterprise MRG 2 Messaging Programming Reference

206

Report a bug

C++ uint32_t getReceivable();

.NET public uint Receivable { get; }

Property: Unsett ledAcks
C++ uint32_t getUnsettledAcks();

.NET public uint UnsettledAcks { get; }

Method: NextReceiver
C++ bool nextReceiver(Receiver&, Duration timeout=Duration::FOREVER);

.NET public bool NextReceiver(Receiver rcvr);

.NET public bool NextReceiver(Receiver rcvr, Duration timeout);

Method: NextReceiver
C++ Receiver nextReceiver(Duration timeout=Duration::FOREVER);

.NET public Receiver NextReceiver();

.NET public Receiver NextReceiver(Duration timeout);

Method: CreateSender
C++ Sender createSender(const Address& address);

.NET public Sender CreateSender(Address address);

Method: CreateSender
C++ Sender createSender(const std::string& address);

.NET public Sender CreateSender(string address);

Method: CreateReceiver
C++ Receiver createReceiver(const Address& address);

.NET public Receiver CreateReceiver(Address address);

Method: CreateReceiver
C++ Receiver createReceiver(const std::string& address);

.NET public Receiver CreateReceiver(string address);

Method: GetSender
C++ Sender getSender(const std::string& name) const;

.NET public Sender GetSender(string name);

Method: GetReceiver
C++ Receiver getReceiver(const std::string& name) const;

.NET public Receiver GetReceiver(string name);

Property: Connection
C++ Connection getConnection() const;

.NET public Connection Connection { get; }

Property: HasError
C++ bool hasError();

.NET public bool HasError { get; }

Method: CheckError
C++ void checkError();

.NET public void CheckError();

See Also:

Section 3.3.3.2, “Windows SDK Contents”

Exchange and Queue Declaration Arguments

207

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8055-249223+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=.NET+Binding+for+the+C%2B%2B+Messaging+API+Class%3A+Session&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

21.11. .NET Class: SessionReceiver
The SessionReceiver class provides a convenient callback mechanism for messages received
by all receivers on a given session.

using Org.Apache.Qpid.Messaging;
using System;

namespace Org.Apache.Qpid.Messaging.SessionReceiver
{
 public interface ISessionReceiver
 {
 void SessionReceiver(Receiver receiver, Message message);
 }

 public class CallbackServer
 {
 public CallbackServer(Session session, ISessionReceiver callback);

 public void Close();
 }
}

To use this class a client program includes references to both Org.Apache.Qpid.Messaging
and Org.Apache.Qpid.Messaging.SessionReceiver. The calling program creates a function
that implements the ISessionReceiver interface. This function will be called whenever a
message is received by the session. The callback process is started by creating a
CallbackServer and will continue to run until the client program calls the
CallbackServer.Close function.

A complete operating example of using the SessionReceiver callback is contained in
cpp/bindings/qpid/dotnet/examples/csharp.map.callback.receiver.

See Also:

Section 3.3.3.2, “Windows SDK Contents”

Red Hat Enterprise MRG 2 Messaging Programming Reference

208

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8063-249231+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=.NET+Class%3A+SessionReceiver&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Exchange and Queue
Declaration Arguments
A.1. Exchange and Queue Argument Reference

Following is a complete list of arguments for declaring queues and exchanges.

Exchange options
qpid.exclusive-binding (bool)
Ensures that a given binding key is associated with only one queue.

qpid.ive (bool)
If set to “true”, the exchange is an initial value exchange, which differs from other
exchanges in only one way: the last message sent to the exchange is cached, and if a new
queue is bound to the exchange, it attempts to route this message to the queue, if the
message matches the binding criteria. This allows a new queue to use the last received
message as an init ial value.

qpid.msg_sequence (bool)
If set to “true”, the exchange inserts a sequence number named “qpid.msg_sequence”
into the message headers of each message. The type of this sequence number is int64.
The sequence number for the first message routed from the exchange is 1, it is
incremented sequentially for each subsequent message. The sequence number is reset to
1 when the qpid broker is restarted.

qpid.sequence_counter (int64)
Start qpid.msg_sequence counting at the given number.

Queue options
no-local (bool)
Specifies that the queue should discard any messages enqueued by sessions on the same
connection as that which declares the queue.

qpid.alert_count (uint32_t)
If the queue message count goes above this size an alert should be sent.

qpid.alert_repeat_gap (int64_t)
Controls the minimum interval between events in seconds. The default value is 60 seconds.

qpid.alert_size (int64_t)
If the queue size in bytes goes above this size an alert should be sent.

qpid.auto_delete_timeout (bool)
If a queue is configured to be automatically deleted, it will be deleted after the amount of
seconds specified here.

Revision History

209

qpid.browse-only (bool)
All users of queue are forced to browse. Limit queue size with ring, LVQ, or TTL. Note that
this argument name uses a hyphen rather than an underscore.

qpid.file_count (int)
Set the number of files in the persistence journal for the queue. Default value is 8.

qpid.file_size (int64)
Set the number of pages in the file (each page is 64KB). Default value is 24.

qpid.flow_resume_count (uint32_t)
Flow resume threshold value as a message count.

qpid.flow_resume_size (uint64_t)
Flow resume threshold value in bytes.

qpid.flow_stop_count (uint32_t)
Flow stop threshold value as a message count.

qpid.flow_stop_size (uint64_t)
Flow stop threshold value in bytes.

qpid.last_value_queue (bool)
Enables last value queue behavior.

qpid.last_value_queue_key (string)
Defines the key to use for a last value queue.

qpid.last_value_queue_no_browse (bool)
Enables special mode for last value queue behavior.

qpid.max_count (uint32_t)
The maximum byte size of message data that a queue can contain before the act ion
dictated by the policy_type is taken.

qpid.max_size (uint64_t)
The maximum number of messages that a queue can contain before the act ion dictated by
the policy_type is taken.

qpid.msg_sequence (bool)
Causes a sequence number to be added to headers of enqueued messages.

qpid.optimistic_consume (bool)
Allows the consumer to dequeue the message before the broker has acknowledged the
producer, in order to reduce latency for durable messaging.

qpid.persist_last_node (bool)
Allows for a queue to treat all transient messages as persistent when a cluster fails down

Red Hat Enterprise MRG 2 Messaging Programming Reference

210

Report a bug

to a single node. When addit ional nodes in the cluster are restored, the transient
messages will no longer be persisted. This mode will not be triggered if a cluster is started
with only one act ive node, and the queues in this mode must be configured to be durable.

qpid.policy_type (string)
Sets default behavior for controlling queue size. Valid values are reject, flow_to_disk,
ring, and ring_strict.

qpid.priorities (size_t)
The number of dist inct priority levels recognized by the queue (up to a maximum of 10).
The default value is 1 level.

qpid.queue_event_generation (type: int)
If the queue is created within a program, sets the queue options to enable queue events.
Use the value 1 to replicate only enqueue events, or 2 to replicate both enqueue and
dequeue events.

qpid.trace.exclude (string)
Does not send on messages which include one of the given (comma separated) trace ids.

qpid.trace.id (string)
Adds the given trace id as to the applicat ion header "x-qpid.trace" in messages sent
from the queue.

x-qpid-maximum-message-count
This is an alias for qpid.alert_count.

x-qpid-maximum-message-size
This is an alias for qpid.alert_size.

x-qpid-minimum-alert-repeat-gap
This is an alias for qpid.alert_repeat_gap.

x-qpid-priorities
This is an alias for qpid.priorities.

Revision History

211

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=8380-375600+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=Exchange+and+Queue+Argument+Reference&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Report a bug

Changes
B.1. New for 2.3
The following content is new for the 2.3 release of the documentation.

See Also:

Section 1.5, “Differences between AMQP 0-10 and AMQP 1.0”
Section 9.13, “ACL Lookup Query Methods”
Section 18.3, “SASL Support in Windows Clients”
Section 9.11, “QMF Events”
Section 9.12, “QMF Client Connection Events”
Section 10.1.4, “Session Exceptions”
Section 20.6, “JMS ListMessage”

Red Hat Enterprise MRG 2 Messaging Programming Reference

212

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+8025%2C+Messaging+Programming+Reference-2-2%0ABuild+Date%3A+22-02-2013+00%3A09%3A03&cf_build_id=13095-375501+22+Feb+2013+00%3A09+en-US+%5BLatest%5D&short_desc=New+for+2.3&product=Red+Hat+Enterprise+MRG&component=Programming_Reference_Guide

Revision History
Revision 2.0.0-31 Fri Feb 22 2013 Joshua Wulf

Built from Content Specificat ion: 8025, Revision: 373300 by jwulf

Revision History

213

	Table of Contents
	Preface
	1. Document Conventions
	1.1. Default Programming Language for Code Samples

	2. We Appreciate Your Feedback

	Chapter 1. Introduction
	1.1. Red Hat Enterprise MRG Messaging
	1.2. Apache Qpid
	1.3. AMQP - Advanced Message Queuing Protocol
	1.4. AMQP 0-10
	1.5. Differences between AMQP 0-10 and AMQP 1.0
	Broker Architecture
	Broker Management
	Symmetry

	Chapter 2. AMQP Model Overview
	2.1. The Producer - Consumer Model
	2.2. Consumer-driven messaging
	2.3. Message Producer (Sender)
	2.4. Message
	2.5. Message Broker
	2.6. Routing Key
	2.7. Message Subject
	2.8. Message Properties
	2.9. Connection
	2.10. Session
	2.11. Exchange
	2.12. Binding
	2.13. Message Queue
	2.14. Message Consumer (Receiver)

	Chapter 3. Getting Started
	3.1. Getting Started with Python
	3.1.1. Python Messaging Development
	3.1.2. Python Client Libraries
	3.1.3. Install Python Client Libraries (Red Hat Enterprise Linux 5)
	3.1.4. Install Python Client Libraries (Red Hat Enterprise Linux 6)
	3.1.5. Python "Hello World" Program Listing

	3.2. Getting Started with .NET
	3.2.1. .NET Messaging Development
	3.2.2. Windows SDK
	3.2.3. Windows SDK Contents
	3.2.4. Obtain the Windows SDK
	3.2.5. Install Windows SDK on a 32-bit system
	3.2.6. Install Windows SDK on a 64-bit system
	3.2.7. .NET C# "Hello World" Program Listing

	3.3. Getting Started with C++
	3.3.1. C++ Messaging Development
	3.3.2. C++ on Linux
	3.3.2.1. C++ Client Libraries
	3.3.2.2. Install C++ Client Libraries (Red Hat Enterprise Linux 5)
	3.3.2.3. Install C++ Client Libraries (Red Hat Enterprise Linux 6)

	3.3.3. C++ on Windows
	3.3.3.1. Windows SDK
	3.3.3.2. Windows SDK Contents
	3.3.3.3. Obtain the Windows SDK
	3.3.3.4. Install Windows SDK on a 32-bit system
	3.3.3.5. Install Windows SDK on a 64-bit system
	3.3.3.6. C++ "Hello World" Program Listing

	3.4. Getting Started with Java
	3.4.1. Java Client Libraries
	3.4.2. Install Java Client Libraries (Red Hat Enterprise Linux 5)
	3.4.3. Install Java Client Libraries (Red Hat Enterprise Linux 6)
	3.4.4. Java JMS "Hello World" Program Listing

	3.5. Getting Started with Ruby
	3.5.1. Ruby Messaging Development
	3.5.2. Ruby Client Libraries
	3.5.3. Install Ruby Client Libraries (Red Hat Enterprise Linux 5)
	3.5.4. Install Ruby Client Libraries (Red Hat Enterprise Linux 6)

	3.6. Hello World
	3.6.1. Red Hat Enterprise Messaging "Hello World"
	3.6.2. "Hello World" Walk-through

	Chapter 4. Beyond "Hello World"
	4.1. Subscriptions
	4.2. Publishing
	4.3. AMQP Exchange Types
	4.4. Pre-configured Exchanges
	4.5. The Default Exchange
	4.5.1. Default Exchange
	4.5.2. Publish to a Queue using the Default Exchange
	4.5.3. Subscribe to the Default Exchange

	4.6. Direct Exchange
	4.6.1. Direct Exchange
	4.6.2. Create a Direct Exchange using qpid-config
	4.6.3. Create a Direct Exchange from an application
	4.6.4. Publish to a Direct Exchange
	4.6.5. Subscribe to a Direct Exchange
	4.6.6. Exclusive Bindings for Direct Exchanges

	4.7. Fanout Exchange
	4.7.1. The pre-configured Fanout Exchange
	4.7.2. Fanout Exchange
	4.7.3. Create a Fanout Exchange using qpid-config
	4.7.4. Create a Fanout Exchange from an application
	4.7.5. Publish to Multiple Queues using the Fanout Exchange
	4.7.6. Subscribe to a Fanout Exchange

	4.8. Topic Exchange
	4.8.1. The pre-configured Topic Exchange
	4.8.2. Topic Exchange
	4.8.3. Create a Topic Exchange using qpid-config
	4.8.4. Create a Topic Exchange from an application
	4.8.5. Publish to a Topic Exchange
	4.8.6. Subscribe to a Topic Exchange

	4.9. Headers Exchange
	4.9.1. The pre-configured Headers Exchange
	4.9.2. Headers Exchange
	4.9.3. Create a Headers Exchange using qpid-config
	4.9.4. Create a Headers Exchange from an application
	4.9.5. Publish to a Headers Exchange
	4.9.6. Subscribe to a Headers Exchange

	4.10. XML Exchange
	4.10.1. Custom Exchange Types
	4.10.2. The pre-configured XML Exchange Type
	4.10.3. Create an XML Exchange
	4.10.4. Subscribe to the XML Exchange

	Chapter 5. Message Delivery and Acceptance
	5.1. The Lifecycle of a Message
	5.1.1. Message Delivery Overview
	5.1.2. Message Generation
	5.1.3. Message Send over Reliable Link
	5.1.4. Message Send over Unreliable Link
	5.1.5. Message Distribution on the Broker
	5.1.6. Message Receive over Reliable Link
	5.1.7. Message Receive over Unreliable Link

	5.2. Browsing and Consuming Messages
	5.2.1. Message Acquisition and Acceptance
	5.2.2. Message Acquisition and Acceptance on an Unreliable Link
	5.2.3. Message Rejection
	5.2.4. Receiving Messages from Multiple Sources
	5.2.5. Rejected and Orphaned Messages
	5.2.6. Alternate Exchange

	Chapter 6. Advanced Queue Features
	6.1. Browse-only Queues
	6.2. Ignore Locally Published Messages
	6.3. Exclusive Queues
	6.4. Automatically Deleted Queues
	6.4.1. Automatically Deleted Queues
	6.4.2. Automatically Deleted Queue Example
	6.4.3. Queue Deletion Checks

	6.5. Last Value (LV) Queues
	6.5.1. Last Value Queues
	6.5.2. Declaring a Last Value Queue
	6.5.3. Last Value Queue Example
	6.5.4. Last Value Queue Command-line Example

	6.6. Priority Queuing
	6.6.1. Priority Queuing
	6.6.2. Declaring a Priority Queue
	6.6.3. Considerations when using Priority Queues
	6.6.4. Priority Queue Demonstration
	6.6.5. Fairshare Feature

	6.7. Message Groups
	6.7.1. Message Groups
	6.7.2. Create a Queue with Message Groups enabled
	6.7.3. Message Group Consumer Requirements
	6.7.4. Configure a Queue for Message Groups using qpid-config
	6.7.5. Create a Queue with Message Groups enabled
	6.7.6. Default Group
	6.7.7. Override the Default Group Name
	6.7.8. Message Groups Demonstration

	Chapter 7. Asynchronous Messaging
	7.1. Asynchronous Operations
	7.2. Asynchronous Sending
	7.2.1. Synchronous and Asynchronous Send
	7.2.2. Sender Capacity
	7.2.3. Set Sender Capacity
	7.2.4. Query Sender Capacity
	7.2.5. Avoiding a Blocked Asynchronous Send
	7.2.6. Asynchronous Message Sending Example
	7.2.7. Asynchronous Send and Link Reliability

	7.3. Asynchronous Receiving
	7.3.1. Asynchronous Message Retrieval (Prefetch)
	7.3.2. Enable Receiver Prefetch
	7.3.3. Asynchronously Acknowledging Received Messages
	7.3.4. Asynchronous Receive and Link Reliability

	Chapter 8. Reliability and Quality of Service
	8.1. Link Reliability
	8.1.1. Reliable Link
	8.1.2. Unreliable Link

	8.2. Queue Sizing
	8.2.1. Controlling Queue Size
	8.2.2. Queue Threshold Alerts

	8.3. Producer Flow Control
	8.3.1. Flow Control
	8.3.2. Queue Flow State
	8.3.3. Broker Default Flow Thresholds
	8.3.4. Disable Broker-wide Default Flow Thresholds
	8.3.5. Per-Queue Flow Thresholds

	8.4. Credit-based Flow Control
	8.4.1. Flow Control Using Credit
	8.4.2. Credit Allocation Modes

	8.5. Durable Queues
	8.5.1. Durable Queues
	8.5.2. Persistent Messages
	8.5.3. Create a durable queue in an application
	8.5.4. Mark a message as persistent
	8.5.5. Durable Message State After Restart
	8.5.6. Message Journal
	8.5.7. Configure the Message Journal in an application

	8.6. Transactions
	8.6.1. Transactions
	8.6.2. Transactions Example

	Chapter 9. Qpid Management Framework (QMF)
	9.1. QMF - Qpid Management Framework
	9.2. QMF Versions
	9.3. Creating Exchanges from an Application
	9.4. Broker Exchange and Queue Configuration via QMF
	9.5. Command Messages
	9.6. QMF Command Message Structure
	9.7. Create Command
	9.8. Delete Command
	9.9. List Command
	9.10. Queue and Exchange Creation using QMF
	9.11. QMF Events
	9.12. QMF Client Connection Events
	9.13. ACL Lookup Query Methods
	Method: Lookup
	Method: LookupPublish
	Management Properties and Statistics
	Example
	ACL File acl-test-01-rules.acl
	Python Script acl-test-01.py

	9.14. Using QMF in a Cluster

	Chapter 10. The Qpid Messaging API
	10.1. Handling Exceptions
	10.1.1. Messaging Exceptions Reference
	10.1.2. C++ Messaging Exceptions Class Hierarchy
	10.1.3. Connection Exceptions
	10.1.4. Session Exceptions
	10.1.5. Sender Exceptions
	10.1.6. Receiver Exceptions

	Chapter 11. Addresses
	11.1. x-declare Parameters
	11.2. Connection Options
	11.3. Setting Connection Options
	11.4. Connection Options Reference

	Chapter 12. Message Timestamping
	12.1. Message Timestamping
	12.2. Enable Message Timestamping at Broker Start-up
	12.3. Enable Message Timestamping from an Application
	12.4. Access a Message Timestamp in Python
	12.5. Access a Message Timestamp in C++
	12.6. Using AMQ 0-10 Message Property Keys for Timestamping

	Chapter 13. Maps and Lists
	13.1. Maps and Lists in Message Content
	13.2. Map and List Representation in Native Data Types
	13.3. Differences between Qpid and JMS Map Message Content
	13.4. Qpid Maps and Lists in Python
	13.5. Python Data Types in Maps
	13.6. Qpid Maps and Lists in C++
	13.7. C++ Data Types in Maps
	13.8. Qpid Maps and Lists in .NET C#
	13.9. C# Data Types and .NET bindings

	Chapter 14. The Request/Response Pattern
	14.1. The Request/Response Pattern
	14.2. Request/Response C++ Example

	Chapter 15. Performance Tips
	15.1. Apache Qpid Programming for Performance

	Chapter 16. Cluster Failover
	16.1. Messaging Clusters
	16.2. Cluster Failover in C++
	16.3. Cluster Failover in Python
	16.4. Cluster Failover in C#
	16.5. Failover Behavior in Java JMS Clients

	Chapter 17. Logging
	17.1. Logging in C++
	17.2. Logging in Python
	17.3. Change the logging level at runtime

	Chapter 18. Security
	18.1. Security features provided by Qpid
	18.2. Authentication
	18.3. SASL Support in Windows Clients
	18.4. Enable Kerberos authentication
	18.5. Enable SSL
	18.6. SSL Client Environment Variables for C++ Clients

	Chapter 19. The AMQP 0-10 mapping
	19.1. The AMQP 0-10 mapping
	19.2. AMQ 0-10 Message Property Keys
	19.3. AMQP Routing Key and Message Subject
	19.4. Using AMQ 0-10 Message Property Keys for Timestamping

	Chapter 20. Using the Qpid JMS client
	20.1. Apache Qpid JNDI Properties for AMQP Messaging
	20.2. JNDI Properties for Apache Qpid
	20.3. Connection URLs
	Broker list URL

	20.4. Java JMS Message Properties
	20.5. JMS MapMessage Types
	20.6. JMS ListMessage
	20.7. JMS Client Logging
	20.8. JMS Client Configuration
	20.8.1. Configuration Methods and Granularity
	20.8.2. Qpid JVM Arguments

	Chapter 21. .NET Binding for Qpid C++ Messaging
	21.1. .NET Binding for the C++ Messaging Client Examples
	21.2. .NET Binding Class Mapping to Underlying C++ Messaging API
	21.3. .NET Binding for the C++ Messaging API Class: Address
	21.4. .NET Binding for the C++ Messaging API Class: Connection
	21.5. .NET Binding for the C++ Messaging API Class: Duration
	21.6. .NET Binding for the C++ Messaging API Class: FailoverUpdates
	21.7. .NET Binding for the C++ Messaging API Class: Message
	21.8. .NET Binding for the C++ Messaging API Class: Receiver
	21.9. .NET Binding for the C++ Messaging API Class: Sender
	21.10. .NET Binding for the C++ Messaging API Class: Session
	21.11. .NET Class: SessionReceiver

	Exchange and Queue Declaration Arguments
	A.1. Exchange and Queue Argument Reference
	Exchange options
	Queue options

	Changes
	B.1. New for 2.3

	Revision History

